首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
脉宽压缩光栅用的多层膜设计和性能分析   总被引:6,自引:3,他引:3  
应用于啁啾脉冲放大技术中的脉宽压缩光栅是基于多层膜作为基底,利用全息干涉技术和离子束技术刻蚀而成。脉宽压缩光栅的衍射效率和抗激光损伤阈值一方面依赖于光栅结构的设计,另一方面很大程度上取决于作为基底的多层膜的设计。给出了以413.1nm作为写入波长,1053nm作为使用波长的多层介质光栅膜的设计,样品在ZZS-800F型真空镀膜机上采用电子束蒸发方式沉积而成,并给出了膜系结构对光学性能影响因素的详细分析,结果表明膜系H3L(H2L)9H0.5L2.03H满足光栅膜的指标。给出了样品光学特性测试,其使用波长处的透射率<0.5%,写入波长处的透射率>90%,测试表明样品满足设计要求且实验结果和理论设计符合得很好。  相似文献   

2.
偏振片在诸多光学系统中有着重要的应用。亚波长介质光栅可用作正入射偏振片,在高能激光系统中有着广泛的应用前景。为了探究波长为1 064 nm的纳秒脉冲激光对于亚波长全介质光栅的诱导损伤特性,使用了粒子群优化算法结合严格耦合波分析设计了光栅的几何参数,计算表明亚波长光栅偏振片在入射光波长1 064 nm附近带宽0.5 nm内,平均消光比为1 500。使用了紫外曝光配合离子束刻蚀的工艺制备了HfO2光栅,并对其纳秒脉冲激光损伤阈值进行了测试。测试结果表明S光损伤阈值约为P光损伤阈值的5倍,且都大于5 J/cm2。结果表明亚波长全介质光栅偏振片可广泛用于正入射激光系统中。  相似文献   

3.
研究了电场在介质膜光栅结构中的增强效应对其抗激光损伤阈值的影响.使用傅里叶模式方法计算了电场在介质膜光栅浮雕结构内的分布.数值分析表明:电场在介质膜光栅中增强的最大值为入射光的2倍,其最大的位置出现在相对于入射光对面的光栅槽侧壁。实验测试介质膜光栅样品在1 064 nm和12 ns, 51.2°和TE偏振光入射时,其抗激光损伤阈值为6.61 J/cm2.对损伤形貌进行扫描电镜精确分析,发现介质膜光栅的初始损伤产生于电场在介质膜光栅内增强最大的位置处.  相似文献   

4.
以薄膜光学的干涉理论和衍射光学的傅里叶模式理论为基础,给出了0.8μm飞秒激光器用多层介质膜脉宽压缩光栅的理论设计;设计采用H3L(HL)^9H0.5L2.4H的多层介质膜为基底,当刻蚀后表面浮雕结构的占宽比为0.35,线密度为1480线/mm,槽深为0.2μm,顶层HfO2的剩余厚度为0.15μm时,对于Littrow角度(36.7°)和TE波模式入射的衍射光栅其-1级衍射效率达到95%以上. 关键词: 飞秒激光 脉宽压缩光栅 多层介质膜  相似文献   

5.
研究了弱光强下细菌视紫红质膜(bR膜)的自衍射特性.给出了弱光强下相干光在bR膜中产生的振幅光栅光强分布模型,并用ysinαx近似表示透射光强分布,结果与实验吻合.给出了不同透射光强y与指数α的对应关系.结果表明,在bR膜及入射光波波长给定的情况下,入射光强越小,对应的α值越大,当入射光强为0.072/T(mW/cm2)时,α等于1.计算出不同入射光强和入射角下的自衍射效率.结果发现,对应于最大衍射效率的最佳入射角为2°.  相似文献   

6.
氧碘激光腔内45°入射高反射镜的膜系设计   总被引:3,自引:1,他引:2       下载免费PDF全文
 从膜层内的驻波场分布和对膜系的相移要求出发,利用倍频的设计思想对氧碘激光腔内45°入射高反射镜进行优化设计,得出了满足对632.8nm和1 315nm双波长高反射,同时在1 315nm处有180°位相延迟的新膜系结构,与传统的设计膜系相比,此膜系大大降低了高折射率层的厚度,薄膜性能有望得到进一步提高。  相似文献   

7.
以1 030 nm高反,940,980 nm高透的波长分离膜作为实例,为提高该薄膜元件的波长分离效果,从膜系的优化方面做了一系列的研究,诸如采用带通滤光片的设计思想,在膜堆两侧加入了匹配层,调整膜堆的周期厚度,并用膜系设计软件对通带作进一步的优化.通过这一系列的优化设计后,利用RF双离子束溅射工艺在BK7玻璃基底上沉积样品薄膜,并在基底背面加镀通带增透膜.结果显示,透射带在940和980 nm处的透过率分别为97.73%和93.63%,反射带在1 030 nm的反射率为99.99%.对所制备的样品薄膜进行了激光损伤阈值测量,得到了35 J/cm2(1 064 nm,12 ns)的结果.  相似文献   

8.
薄膜截止滤光片在倾斜入射时不可避免地会产生s和 p二个偏振分量的分离,因而在许多应用,特别是光通讯的应用中成为一个棘手的难题。提出了一种新的设计方法,对最常用的45°入射角,实现了长波通和短波通两种截止滤光片的完全消偏振, 在透射率为50%处,其偏振分离分别为0.3 nm和 0.1 nm。基本的设计方法是采用宽带法布里珀罗薄膜干涉滤光片中心波长两侧的干涉带作为长波通或短波通截止滤光片的初始膜系,然后经过适当的优化以提高透射带的透射率。宽带干涉滤光片的间隔层常由半波长厚度的高、低折射率混合膜层组成,如2H2L2H或2L2H2L。由于这种设计的截止区和透射带带宽常嫌不足,故提出了展宽截止区和透射带的方法。对一个典型的短波通截止滤光片,在波长1550 nm,截止区和透射带宽均达到了200 nm。这种设计方法不仅简单、性能优良,而且膜厚控制容差较大,故易于制造。  相似文献   

9.
薄膜截止滤光片的消偏振设计   总被引:3,自引:2,他引:1  
顾培夫  陈卫斌  刘旭 《光学学报》2005,25(2):74-278
薄膜截止滤光片在倾斜入射时不可避免地会产生s和p二个偏振分量的分离,因而在许多应用,特别是光通讯的应用中成为一个棘手的难题。提出了一种新的设计方法,对最常用的45°入射角,实现了长波通和短波通两种截止滤光片的完全消偏振, 在透射率为50%处,其偏振分离分别为0.3 nm和0.1 nm。基本的设计方法是采用宽带法布里珀罗薄膜干涉滤光片中心波长两侧的干涉带作为长波通或短波通截止滤光片的初始膜系,然后经过适当的优化以提高透射带的透射率。宽带干涉滤光片的间隔层常由半波长厚度的高、低折射率混合膜层组成,如2H2L2H或2L2H2L。由于这种设计的截止区和透射带带宽常嫌不足,故提出了展宽截止区和透射带的方法。对一个典型的短波通截止滤光片,在波长1550 nm,截止区和透射带宽均达到了200 nm。这种设计方法不仅简单、性能优良,而且膜厚控制容差较大,故易于制造。  相似文献   

10.
卫星激光通信滤光膜的研制   总被引:1,自引:1,他引:0  
张静  付秀华  潘永刚 《光子学报》2012,41(3):303-306
为满足卫星激光通信中超高速数据传输的特殊要求,采用电子束和离子辅助沉积技术,制备了532nm、632nm和1 064nm波长处高反射,808nm和1 550nm处高透射的多波段滤光膜.选取了H4和SiO2作为高低折射率材料,通过对膜系设计曲线的不断优化,减少了灵敏层的个数,得到了相对易于制备的膜系结构;采用电子束加热蒸发方法并加以离子辅助沉积系统制备薄膜,采用光控与晶控同时监控的方法控制膜厚;通过不断调整工艺,提高了薄膜的抗激光损伤能力,减小了膜厚控制误差,提高了透射波段的透过率及反射波段的反射率,最终得到了光谱性能较好的滤光膜.该薄膜能够承受雨淋、盐雾、高低温等环境测试,满足使用要求.  相似文献   

11.
Used in chirped-pulse amplification system and based on multi-layer thin film stack, pulse compressor gratings (PCG) are etched by ion-beam and holographic techniques. Diffraction efficiency and laser-induced damage threshold rely on the structural parameters of gratings. On the other hand, they depend greatly on the design of multi-layer. A theoretic design is given for dielectric multi-layer, which is exposed at 413.1 nm and used at 1053 nm. The influences of coating design on optical characters are described in detail. The analysis shows that a coating stack of H3L (H2L)9H0.5L2.01H meets the specifications of PCG well. And there is good agreement of transmission between experimental and the theoretic design.  相似文献   

12.
本文阐述了在中国原子能科学研究院“天光一号”KrF激光核聚变实验装置上,MOPA系统光学元件加工与镀膜研究工作的进展。实验测量结果表明,加工后的基片表面均方根粗糙度对于K9光学玻璃与熔融石英玻璃来说分别为σrms=1.8±0.5nm,σrms=2.0±0.4nm。镀HfO2/SiO2高反射膜的光学元件的反射率与破坏阈值分别为R>99.5%,Eth=1.30~1.33J/cm2。镀Al2O3/MgF2增透膜的光学元件的透射率与破坏阈值分别为T>99.5%,Eth=1.3~1.97J/cm2。  相似文献   

13.
通过组合长波通和短波通膜堆的方法,设计并制备了一种大入射角容差宽带薄膜偏振器。该薄膜为HfO_2/SiO_2结构,采用无离子束辅助的电子束蒸发工艺,蒸发金属铪和SiO_2制得。对该膜的透射率光谱、激光损伤阈值和形貌进行了研究,结果显示其不仅在1044~1084 nm波段内都具有很高的对比度,而且在1064 nm波长、53°~60°的入射角范围内具有很大的消光比和激光损伤阈值,且损伤特性基本不随入射角变化。该偏振器的P光损伤阈值约为20 J/cm~2,损伤主要由基板与薄膜界面处的纳米级缺陷所引起;S光损伤阈值约为45 J/cm~2,损伤主要由激光辐照下薄膜表面的等离子烧蚀现象引起。  相似文献   

14.
梯形介质膜光栅衍射特性分析   总被引:3,自引:1,他引:2  
基于严格耦合波理论建立了梯形介质膜光栅的衍射机理模型,利用该模型讨论了底角为70°的梯形介质膜光栅-1级的衍射行为.通过对梯形介质膜光栅的占空比、槽深和剩余厚度的优化,设计了应用于1053 nm和51.2°角度入射的梯形介质膜光栅.对于顶层为HfO2的介质膜光栅,当槽深为200 nm,剩余厚度为100 nm,占空比为0.35时.其衍射效率优于99.5%,而对于顶层为SiO2的梯形光栅,为获得99.5%的衍射效率.其槽深为800 nm,剩余厚度为320 nm.而且,获得同样的衍射效率,顶层为HfO2的梯形光栅具有更宽的光谱特性.数值计算表明,严格耦合波理论模型对梯形介质膜光栅衍射效率的计算具有很好的收敛性和稳定性.  相似文献   

15.
利用傅里叶模式理论分析了TE波自准直角入射的使用条件下,多层介质膜光栅的光栅区和多层膜区电场分布的特点.分别讨论了HfO2和SiO2为顶层光栅材料时,光栅结构参数对光栅脊峰值电场的影响,结果表明,对于不同膜厚的顶层材料,存在一个最佳膜厚度,使光栅脊峰值电场最小,并且当膜厚增大时,设计大高宽比的光栅可以降低该电场峰值.最后,在大角度条件下使用多层膜光栅也可以降低光栅脊处的峰值电场. 关键词: 衍射光学 多层介质膜光栅 模式理论 损伤阈值  相似文献   

16.
A new method for increasing laser induced damage threshold (LIDT) of dielectric antireflection (AR) coating is proposed. Compared with AR film stack of H2.5L (H:HfO2, L:SiO2) on BK7 substrate, SiO2 interfacial layer with four quarter wavelength optical thickness (QWOT) is deposited on the substrate before the preparation of H2.5L film. It is found that the introduction of SiO2 interfacial layer with a certain thickness is effective and flexible to increase the LIDT of dielectric AR coatings. The measured LIDT is enhanced by about 50%, while remaining the low reflectivity with less than 0.09% at the center wavelength of 1064 nm. Detailed mechanisms of the LIDT enhancement are discussed.  相似文献   

17.
研究了800nm飞秒激光照射下45°高反膜ZrO2-Si O2的破坏及其超快动力学过程。利用原子力显微镜和扫描电镜观察了材料的烧蚀形貌,测量了破坏阈值与脉冲宽度、烧蚀深度与脉冲能量的依赖关系。随着脉冲宽度从50fs增加到900fs,其烧蚀阈值从0.35J/cm2增加到1.78J/cm2。烧蚀深度与激光能流密度近似成对数关系。当激光强度略高于烧蚀阈值时,材料很快被烧蚀到几百纳米,烧蚀深度表现出明显的层状特性。同时,利用建立的抽运探针实验系统,测量了高强度抽运脉冲作用下材料对探针光的反射率随延迟时间的变化,揭示了薄膜烧蚀的超快动力学过程。实验结果表明高反膜表层的材料对烧蚀特性有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号