首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible formation of a nanocrystalline structure in controlled crystallization of a bulk Zr50Ti16Cu15Ni19 amorphous alloy has been studied using differential scanning calorimetry, transmission and high-resolution electron microscopy, and x-ray diffraction. It was established that crystallization of the alloy at temperatures above the glass formation point occurs in two stages and brings about the formation of a nanocrystalline structure consisting of three phases. Local spectral x-ray analysis identified the composition and structure of the phases formed.  相似文献   

2.
The structure and magnetic properties and the magnetoimpedance effect of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 alloy ribbons, obtained from the amorphous state by annealing under different conditions, were comparatively analyzed. Despite the similarity of the samples’ structural states and the processes of their quasi-static magnetization reversal, the features of the magnetoimpedance effect are indicative of significant differences in the processes of their dynamic magnetization.  相似文献   

3.
The influence of different degrees of crystallinity on the magnetic behaviour of heat-treated nanocrystalline Fe76Mo8Cu1B15 alloy has been investigated using a combination of Mössbauer spectrometry and magnetic measurements. The evolution of magnetically active regions and their growth with rising contents of nanocrystals are followed by distributions of hyperfine interactions. Combined electric quadrupole and magnetic dipole interactions corresponding to non-magnetic and magnetic regions inside the amorphous phase, respectively, were revealed. A deterioration of the soft-magnetic properties takes place for the samples exhibiting low fraction of crystallinity. The very good soft-magnetic behaviour is regained for the samples where the primary crystallization process is almost finished.  相似文献   

4.
The effect of heat treatment over the range from room temperature to 500°C on the elastic properties of a bulk amorphous Pd40Cu30Ni10P20 alloy was studied. It is shown that the increase in the shear modulus under crystallization of the alloy is two-staged and that the most significant increase in the modulus occurs at the second stage. The obtained results are compared to the x-ray structural data. It is also found that the density characteristics of the as-cast material change very slightly during the transformation from the amorphous to the crystal state, with the density decreasing slightly due to crystallization.  相似文献   

5.
The effect of severe plastic deformation by torsion (SPDT) in Bridgman anvils at a high pressure (6 GPa) on the physical properties and crystal structure of the shape memory alloy Ti49.5Ni50.5 has been studied. The behavior of the thermal expansion, electrical resistivity, absolute differential thermopower, Hall coefficient, magnetic properties, and optical characteristics of the amorphous/nanocrystalline and submicrocrystalline alloys obtained by the SPDT with subsequent heat treatment at 800 K has been discussed.  相似文献   

6.
Field investigations were performed into the nature of oxidation of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy (Vitreloy-1), a new alloy highly promising for in -vessel mirrors of the ITER (International Thermonuclear Experimental Reactor). The main methods of investigation were X-ray photoelectron spectroscopy and multi-angle ellipsometry. The resistance of the optical properties of Vitreloy-1 against radiation impact was explained by the oxidation of the surface layer, based on the features of the diffusion process in amorphous alloys and of interaction between amorphous metal alloys with hydrogen.  相似文献   

7.
Phase transformations in a Ni2.14Mn0.81Fe0.05Ga alloy in different structural states are studied from the temperature dependences of its electrical resistivity. The dependences obtained indicate that, in the coarse-grained state, this alloy undergoes two structural phase transformations: intermartensitic modulation transformation and martensite-austenite transformation. In the nanocrystalline state, these transformations are absent. The recrystallization of a nanocrystalline sample at 773 K for 30 min results in the martensite-austenite transformation; however, the phase transformation related to a change in the martensite modulation period does not occur in this state. The resistivity is shown to depend on the structural state of the alloy.  相似文献   

8.
The optical properties of Fe78Si10B12 ferromagnetic alloy in amorphous, crystalline, and intermediate structural states have been investigated by ellipsometry in the spectral range of 0.22–18 μm. It is established that alloy crystallization leads to a significant change in the optical constants and the frequency dependences of the dielectric functions calculated based on these optical constants. The structural reconstruction under heat treatment leads to an increase in the intensity and shift of interband absorption bands. The plasma and relaxation frequencies of conduction electrons are determined; their numerical values also depend on the degree of atomic ordering.  相似文献   

9.
The structural evolution of an amorphous Fe80B20 alloy subjected to severe plastic deformation at room temperature or at 200°C was studied. Deformation leads to the formation of α-Fe nanocrystals in an amorphous phase. After room-temperature deformation, nanocrystals are localized in shear bands. After deformation at 200°C, the nanocrystal distribution over the alloy is more uniform. Possible causes of the crystallization of the amorphous phase during severe plastic deformation are discussed.  相似文献   

10.
The temperature dependences of the magnetic properties and the magnetoimpedance effect of soft magnetic nanocrystalline Fe73.5Si16.5B6Nb3Cu1 alloy ribbons are studied in the temperature range 24–160°C. A high temperature sensitivity of the impedance and the magnetoimpedance effect of the ribbons are detected in the ac frequency range 0.1–50 MHz. At an ac frequency of 50 MHz, the change in the impedance reaches 0.2 Ω/°C (0.5%/°C) in the temperature range 85–160°C. When the temperature increases, a monotonically decreasing character of the dependence of the magnetoimpedance effect on the applied magnetic field changes into a dependence having an increasing initial segment. The effect of temperature on the magnetoimpedance properties of the soft magnetic nanocrystalline ribbons is shown to result from temperature-induced changes in their electrical conductivity, magnetization, and effective magnetic anisotropy.  相似文献   

11.
The structural properties and parameters of ferromagnetic resonance have been studied for Fe73.5CuNb3Si13.5B9 nanocrystalline alloys produced from the initial amorphous state via annealing under different conditions. The dependence of the linewidth of the ferromagnetic resonance on the grain size ΔHD 6 has been found. The result is discussed within the framework of the random magnetic anisotropy model.  相似文献   

12.
The influence of the thermal treatment type on the temperature dependences of the magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 alloy strips is investigated. The main mechanisms determining the temperature behavior of the magnetoimpedance of strips with induced magnetic anisotropy having various special features are established. The prospects for application of the alloy strips nanocrystallized in the presence of a magnetic field as sensitive elements of temperature sensors and special magnetic field detectors are demonstrated.  相似文献   

13.
The short-range order around boron, aluminum, and iron atoms in Fe75B25 and Fe70Al5B25 amorphous alloys has been studied by 11B and 27Al nuclear magnetic resonance at 4.2 K and 57Fe Mössbauer spectroscopy at 87 and 295 K. The average magnetic moment of iron atoms μ(Fe) in these alloys has been measured by a vibrating sample magnetometer. It has been revealed that the substitution of aluminum atoms for iron atoms does not disturb μ(Fe) in the Fe70Al5B25 alloy, gives rise to an additional contribution to the 11B NMR spectrum in the low-frequency range, and shifts maxima of the distribution of hyperfine fields at the 57Fe nuclei. In the Fe70Al5B25 amorphous alloy, the aluminum atoms substitute for iron atoms in the nearest coordination shells of boron and iron atoms. This alloy consists of nanoclusters in which boron and iron atoms have a short-range order of the tetragonal Fe3B phase type.  相似文献   

14.
The influence of plastic deformation on the structure of the Pd40Ni40P20 amorphous alloy has been investigated using X-ray diffraction and measurements of the velocity of sound. It has been revealed that the rolling of the sample leads to a change in the structure of the amorphous phase (distortion of the first coordination sphere) and that the structural transformations are more pronounced in the near-surface region of the sample. The rolling also results in a decrease in the transverse velocity of sound. The observed effects decrease with time. It has been demonstrated that the revealed effects are associated with the inelastic deformation of the amorphous alloy.  相似文献   

15.
Depth-sensing (indentation) testing is used to study the characteristics of a serrated plastic flow in a Pd40Cu30Ni10P20 bulk amorphous alloy, and the boundaries between the regions of serrated and homogeneous plastic deformation are determined.  相似文献   

16.
“Zero field”-Mössbauer and magnetization measurements have been performed on an amorphous Fe76Mo8Cu1B15 alloy in the temperature range of (10-340) K. The room-temperature Mössbauer spectrum exhibits magnetic dipole and electric quadrupole interactions. At approximately 306 K, the magnetic interactions vanish and the alloy shows fully paramagnetic behavior. On the other hand, the relative representation of paramagnetic component becomes weak with decreasing temperature and below 220 K the magnetic dipole interactions prevail. Below this temperature an anomaly in the low-temperature dependencies of ac susceptibility and of magnetization, measured during cooling the specimen from 340 K down to 20 K is observed. The anomaly on the magnetization curve vanishes in the field of 200 Oe.  相似文献   

17.
The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs. Supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2007000296), the National Natural Science Foundation of China (Grant No. 50731005), SKPBRC (Grant Nos. 2007CB616915 and 2006CB605201), and PCSIRT (Grant No. IRT0650)  相似文献   

18.
We investigate the processes of crystallization and determined the structure and thermal properties of Al86Ni8Ho6 amorphous alloy in a wide temperature range. A three-stage nature of the crystallization process upon heating to a temperature of 700 K is found. According to data of high-temperature X-ray diffraction analysis, the crystallization of an Al86Ni8Ho6 amorphous ribbon is rather complex: aluminum crystallites grow in the amorphous phase to a temperature of 470 K, a Ho3Ni5Al19 phase is formed above 563 K, and a HoAl3 phase appears above 598 K. The phases of Ho3Ni5Al19 and HoAl3 are retained up to a temperature of 723 K. A three-stage kinetic model of the crystallization process with the reaction sequence is proposed based on calculations by multivariate nonlinear regression. The values of the total activation energy for each crystallization stage reach 239, 378, and 247 kJ/mol.  相似文献   

19.
This paper presents the results of investigation on the influence of temperature on magnetoelastic characteristics of the two ring-shaped cores, made of Fe70Ni8Si10B12 amorphous alloy. The cores were annealed for 1 h at 350 and 400°C, respectively. The compressive force F was applied perpendicular to the direction of the magnetizing field H in the sample. Special cylindrical backing enables application of the uniform compressive stress σ to the wound ring sample. A resistive furnace heated the experimental set-up. Results presented in the paper indicate a significant influence of the temperature on the magnetoelastic characteristics of Fe70Ni8Si10B12 amorphous alloy. Information about the magnetoelastic characteristics of this material may be useful in the magnetoelastic sensor development. Also this will create new possibilities in the development of physical model of magnetoelastic effect.   相似文献   

20.
Inverted hysteresis loops were observed for the first time in the near-surface layers of heterogeneous (nanocrystalline/amorphous) Fe81Nb7B12 alloys. In particular, a negative residual magnetization is observed when a positive magnetic field applied in the sample plane is decreased to zero. The inverted hysteresis is qualitatively explained within the framework of a two-phase model, according to which the heterogeneous alloys contain two dissimilar phases exhibiting uniaxial magnetic anisotropy and featuring antiferromagnetic exchange interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号