首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
CdTe nanocrystals were grown from commercially available RG850 Schott filter glass by two-step heat-treatment process which almost doubles the particle to matrix volume fraction. A calculation shows that a quantized-state effective mass model in the strong confinement regime might be used to deduce the average radius for the nanocrystals larger than 2 nm in radius from the energetic position of the first exciton peak in optical absorption spectrum. Size-induced shift of ∼360 meV in the first exciton peak position was observed. The steady state photoluminescence spectra exhibit a broad band red shifted relative to the first exciton band, which indicates the existence of shallow trap states. The non-linear optical properties of CdTe nanocrystals were studied by room temperature resonant photoabsorption spectroscopy. The differential absorption spectra had three-lobed structure whose size-dependent evolution was explained by bleaching of the absorption, red shift and broadening in the Gaussian absorption band used to fit the first exciton peak. A maximum red shift of 2.32 meV for the average nanocrystal radius of 4.65 nm was estimated by fitting the photomodulation spectra with a combination of first and second derivative Gaussian absorption bands. We presume that the red shift is induced by the electric field of trapped charges in surface states. Internal electric field strengths of 23 and 65 kV/cm were predicted for the average nanocrystal radii of 3.95 and 4.65 nm, respectively, with the help of second-order perturbation theory in the strong confinement limit.  相似文献   

2.
A statistical mechanical theory of exciton migration in a fluctuating environment is developed with the use of the time-convolutionless equation formalism. This gives a satisfactory result when the stochastic perturbations acting on excitons are assumed to be Gaussian.Our theory is valid for any timescale and is applicable to the case of off-diagonal randomness as well as the diagonal randomness. For the Gaussian-Markoffian process, a basic equation can be solved analytically to give optical absorption spectra and the density of states. These quantities show systematic variations when certain characteristic parameters are changed.  相似文献   

3.
The present work investigates the nonlinear optical properties of a GaN quantum dot in the disk limit via the exciton and biexciton states using the compact density matrix formalism. Based on this model, we calculate the ground state energy of the exciton and biexciton states by the variation method, within envelope function and effective mass approximations. Linear and nonlinear optical absorption (α (1), α (3)) and oscillator strengths attributed to the optical transitions are obtained. The details of the behaviour of α (1) and α (3) around the resonance frequencies and for different quantum dot geometries are presented. It is found that the size of quantum dot and the optical intensity have a remarkable effect on the optical absorption, and the biexcitonic two-photon absorption coefficient(K 2) has also been calculated in this system. The results show that this parameter is strongly affected by the size of the quantum dot.  相似文献   

4.
We have investigated the one-dimensional model of an exciton moving along a (finite or semi-infinite) chain of sites with the local energy at one specific site being randomly modulated. The modulation is described by the Markoff stochastic process and we do not invoke the white-noise assumption. For this model, we give an approximation-free calculation of the density of states, the projected density of states and the optical absorption spectrum. The exact solution is found for a broad family of stochastic processes which bridges (and includes) the dichotomic process and the Gaussian one. The results are discussed in various physical limits such as whitenoise limit, weak-perturbation limit and weak-tunneling limit. Particularly, in the slow-modulation (or static) limit, our model represents a chain with a static distribution of energy at the distinguished impurity site and the spectral characteristics reveal a nontrivial dependence on the width of this energy distribution.  相似文献   

5.
ZnSe/SiO2半导体量子点玻璃的光谱特性   总被引:1,自引:0,他引:1  
对采用溶胶凝胶法制备的ZnSe/SiO2半导体量子点玻璃的光谱性质进行了测试分析.UV-Vis透射光谱中观察到光吸收边相对于体相半导体有明显蓝移.稳态发射光谱(PL)中观察到ZnSe纳米晶体的位于蓝区的基本呈高斯分布的弱的最低激子发射峰、强而宽的表面态发光带以及对应杂质能级的三个锐峰发光.时间分辨荧光光谱(TRPL)中观察到发光效率高的最低激子发射峰,并测量其荧光衰减寿命,经尾部拟合为28.5 ps.同时,结合有效质量近似(EMA)模型,估计ZnSe纳米晶体的平均粒径介于2.45~3.60 nm之间,尺寸分布基本呈高斯型.  相似文献   

6.
Recent research in nano-optical engineering and in nanomedicine as well, seeks for methods of construction of various types of nano-markers, nano-carriers, and ways to deliver drugs to the exactly determined regions of body. In this process it is important to find methods of recognition of certain types of molecules. It is obvious that optical recognition would be the easiest and the most effective way to do it. Our research presents a model of a molecular ultrathin crystalline film and generated exciton system inside it and corresponding methodology of analysis of their optical characteristics. Properties of these spatially very restricted structures are very sensitive to their surrounding surfaces. Using the two-time Green’s functions adapted for crystalline structures with symmetry breaking, and graphical-numerical software, we have calculated the energy spectra and possible exciton states. We have shown that the appearance and the presence of localized states on the surfaces and in the boundary layers of the film depend on the thickness of the film and the film surroundings, presented through the perturbation of parameters on surfaces. Optical properties in these structures demonstrate discrete and very selective resonant absorption spectra, depending on the perturbation on their surfaces.  相似文献   

7.
We present a model which describes the influence of lattice vibrations on the excitonpolariton. We solve the density matrix equation for the coupled photon-exciton-phonon system where the model of Haken and Strobl is used to describe the exciton phonon coupling which is responsible for the incoherent part of the motion. Our model allows us to calculate the dispersion relation of the damped polariton. Furthermore we may understand the optical absorption of crystals in the polariton picture. Our solution also exhibits the phenomenon of nonclassical light absorption.  相似文献   

8.
We investigate the effects of structural disorder on the exciton density of states of molecular crystals, utilizing an exact soluble model which involves correlated Lorentzian distributions of both the site-excitation energies and the transfer integrals. Off-diagonal disorder results in asymmetric density of states functions, the asymmetry being prominent for one-dimensional exciton band structure.  相似文献   

9.
Effect of laser field intensity on exciton binding energies is investigated in a GaAs/ GaAlAs double quantum well system. Calculations have been carried out with the variational technique within the single band effective mass approximations using a two parametric trial wave function. The interband emission energy as a function of well width is calculated in the influence of laser field. The laser field induced photoionization cross-section for the exciton placed at the centre of the quantum well is computed as a function of normalized photon energy. The dependence of the photoionization cross-section on photon energy is carried out for the excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The intense laser field dependence of interband absorption coefficient is investigated. The results show that the exciton binding energy, interband emission energy, the photoionization cross-section and the interband absorption coefficient depend strongly on the well width and the laser field intensity. Our results are compared with the other existing literature available.  相似文献   

10.
11.
A numerical study is made of the effect of disorder on the trapping of Frenkel excitons in three-dimensional systems atT=0 K. A Gaussian distribution of optical transition frequencies is assumed. The disorder enhances the decay of ak = 0 exciton created by pulsed optical excitation, but reduces the overall exciton trapping rate. An interpretation of the results in terms of increased exciton scattering and reduced exciton mobility is outlined.  相似文献   

12.
The spatial position of the long-wavelength chlorophylls in trimer of pigment-protein complex of photosystem I (PSI) have been determined bymodeling the optical fluorescence absorption and emission spectra for two hypothetical models of PSI trimer. The calculation has been performed using X-ray diffraction data on the spatial position of chlorophylls in PSI monomer; the pigment site energies were taken from the studies of other researchers, while interactions between monomers in trimer are considered as fitting parameters. The interaction energy between the chlorophylls spaced by a distance smaller than 10 Å was estimated based on the concept of extended dipole?dipole interaction. The model under study allowed us to evaluate the influence of the exciton interaction between peripheral pigments on the optical response of PSI trimer. The intensity and shape of stationary fluorescence line turned out to be sensitive to the PSI monomer packing in trimer. A visualization of the density matrix for low-energy exciton states has made it possible to estimate the localization of long-wavelength chlorophylls in PSI trimer.  相似文献   

13.
We present a brief overview of recent work on the optical properties of molecular aggregates with a tubular (cylindrical) shape. The exciton states responsible for these properties can be distinguished with regard to a transverse wave number, which directly relates to optical selection rules and polarization direction of the associated absorption line. We discuss two types of analytical solutions for the exciton wave functions and the associated absorption and dichroism spectra.  相似文献   

14.
The absorption spectra and the refractive index changes are calculated theoretically for an exciton in a core/shell quantum dot. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The dimensionality effect of exciton quantum dots on the optical absorptions has been studied. It has been found that in the same regime, the optical absorption intensities of excitons are much smaller for the core/shell quantum dots than for the two-dimensional quantum rings. The linear and the nonlinear optical absorption coefficients and refractive index changes have been examined with the change of the confinement potential. The results show that the optical absorptions and the refractive index changes are strongly affected by the repulsive core of core/shell quantum dots. Moreover, the calculated results also reveal that as the inner radius increases, the peak values of the absorption coefficients and the refractive index changes of an exciton will show the optical Aharonov–Bohm oscillation in core/shell quantum dots.  相似文献   

15.
16.
The luminescence and luminescence excitation spectra of CdSe/ZnSe quantum dots are studied in a set of double quantum wells with the ZnSe barrier of width 14 nm, the same amount of a deposited CdSe layer forming a deep well and shallow wells with different depths. It is found that for a certain relation between the depths of shallow and deep wells in this set, conditions are realized under which the exciton channel in the luminescence excitation spectrum of a shallow well dominates in the region of kinetic exciton energies exceeding 10 longitudinal optical phonons above the bottom of the exciton band of the ZnSe barrier. A model is developed for the transfer of electrons, holes, and excitons between the electronic states of shallow and deep quantum wells separated by wide enough barriers. It is shown that the most probable process of electronic energy transfer between the states of shallow and deep quantum wells is indirect tunneling with the simultaneous excitation of a longitudinal optical phonon in the lattice. Because the probability of this process for single charge carriers considerably exceeds the exciton tunneling probability, a system of double quantum wells can be prepared in which, in the case of weak enough excitation, the states of quantum dots in shallow quantum wells will be mainly populated by excitons, which explains experimental results obtained.  相似文献   

17.
In this article, the fundamental physics of multi-exciton states in semiconductor nano-crystals is reviewed focusing on the mesoscopic enhancement of the excitonic radiative decay rate and the excitonic optical nonlinearity and the mechanism of their saturation with increase of the nanocrystal size. In the case of the radiative decay rate the thermal excitation of excited exciton states having small oscillator strength within the homogeneous linewidth of the exciton ground state is essential in determining the saturation behavior. The weakly correlated exciton pair states are found to cause a cancellation effect in the third-order nonlinear optical susceptibility at the exciton resonance, providing the first consistent understanding of the experimentally observed saturation of the mesoscopic enhancement of the excitonic optical nonlinearity. The presence of the weakly correlated exciton pair states is confirmed convincingly from the good correspondence between theory and experiments on the induced absorption spectra from the exciton state in CuCl nanocrystals. Furthermore, ultrafast relaxation processes of biexcitons are discussed in conjunction with the observed very fast rise of the biexciton gain in nanocrystals. In prospect of future progress in research, the theoretical formulation to calculate the triexciton states as one of the multi-exciton states beyond the biexciton is presented for the first time including the electron-hole exchange interaction.  相似文献   

18.
The optical absorption spectra of alkali cyanides in the UV region present a set of weak absorption bands which are identified as triplet a'3Σ+ molecular excitons. The nature of the molecular exciton transitions in the ionic-molecular crystals is discussed and the existence of an admixture between molecular exciton and charge transfer exciton states is suggested.  相似文献   

19.
This paper reports on the results of experimental investigations of the optical absorption (in the wavelength range 200–1200 nm) by carbon-containing thin nanofilms formed on the surface of poly(vinylidene fluoride) upon its chemical functionalization. The optical spectra exhibit resonance absorption peaks in the photon energy range 2.5–3.0 eV. The IR absorption spectra contain lines attributed to the carbon-containing phase. The band structure, the density of states, and the optical constants of one-dimensional carbon chains with added hydrogen are calculated by the semiempirical tight-binding method. The results of the calculations are compared with the experimental optical spectra. It is demonstrated that the theoretical and experimental spectra are in satisfactory agreement.  相似文献   

20.
We analyze the effects of on-site electronic coulomb repulsion U on the optical absorption and density of states of a graphene like structure with two different sublattice on-site energies in the context of Hubbard model. Mean field approximation has been implemented in order to find excitation spectrum of electronic system. Antiferromagnetic long range ordering has been considered as the ground state of model Hamiltonian. We find that the band gap in both optical conductivity and density of states decreases with strength of coulombic interaction. The absorption spectra of the graphene like structure as a nanoscale system exhibit the prominent peaks, mainly owing to the divergent density of states and excitonic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号