首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion inhibition potential of four quinoxaline derivatives namely, 1-[3-(4-methylphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Me-4-PQPB), 1-(3-(4-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl)butan-1-one (Mt-4-PQPB), 1-[3-(3-methoxyphenyl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Mt-3-PQPB) and 1-[3-(2H-1,3-benzodioxol-5-yl)-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-1-yl]butan-1-one (Oxo-1,3-PQPB) was studied for mild steel corrosion in 1 M HCl solution using electrochemical, spectroscopic techniques and quantum chemical calculations. The results of both potentiodynamic polarization and electrochemical impedance spectroscopic studies revealed that the compounds are mixed-type inhibitors and the order of corrosion inhibition efficiency at 100 ppm is Me-4-PQPB>Mt-3-PQPB>Oxo-1,3-PQPB>Mt-4-PQPB. Fourier transform infrared (FTIR) and ultraviolet–visible (UV–vis) spectroscopic analyses confirmed the presence of chemical interactions between the inhibitors and mild steel surface. The adsorption of the inhibitor molecules on mild steel surface was found to be both physisorption and chemisorption but predominantly chemisorption. The experimental data obey Langmuir adsorption isotherm. Scanning electron microscopy studies revealed the formation of protective films of the inhibitors on mild steel surface. Quantum chemical parameters obtained from density functional theory (DFT) calculations support experimental results.  相似文献   

2.
The inhibition effect of Schiff bases benzylidene-(2-methoxy-phenyl)-amine (A), (2-methoxy-phenyl)-(4-methyl-benzylidene)-amine (B), (4-chloro-benzylidene)-(2-methoxy-phenyl)-amine (C) and (4-nitro-bezylidene)-(2-methoxy-phenyl)-amine (D) on the corrosion of aluminum in 1 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. It has been found that all the studied Schiff bases are excellent inhibitors. Maximum inhibition was obtained for 0.01 M Schiff base A. Results show that the inhibition efficiency increases with decreasing in temperature and increasing in concentration of Schiff base. Polarization curves reveal that the used inhibitors are mixed type inhibitors. The surface adsorption of the Schiff bases leads to a decrease of double layer capacitance as well as an increase of polarization resistance. The inhibitor performance depends strongly on the type of function groups substituted on benzene ring. The adsorption of used compounds on the aluminum surface obeys a Langmuir isotherm and has a physical mechanism. Thermodynamic parameters for both dissolution and adsorption processes were determined. The quantum chemical study of the corrosion inhibition efficiency of the Schiff bases on Al in molar HCl was carried out.  相似文献   

3.
The efficiency, as steel-corrosion inhibitors in 0.1 M and 1 M H2SO4, of two Schiff bases, 2-{[(4-methoxyphenyl)imino]methyl}phenol and 1-{[(4-methoxyphenyl)imino]methyl}-2-naphthol, (abbreviated SB-1 and SB-2, respectively) was investigated by Tafel extrapolation and linear polarization methods. Corrosion parameters and adsorption isotherms were determined from current-potential curves. It was found that the percent inhibition efficiencies (η%) and surface coverage (θ) increase with an increases in the concentrations of inhibitors. The results showed that these compounds act as good corrosion inhibitors especially at high concentrations. The adsorption of used compounds on the steel surface obeys Langmuir's isotherm. Obvious correlation was found between corrosion inhibition efficiency and quantum chemical parameters obtained by B3LYP/6-31g(d) method. The obtained theoretical results have been compared with the experimental findings.  相似文献   

4.
Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole (ATD) on copper corrosion as a corrosion inhibitor in de-aerated, aerated and oxygenated 3% NaCl solutions have been studied using potentiodynamic polarization, potentiostatic current-time, electrochemical impedance spectroscopic (EIS), weight loss and pH measurements along with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. Potentiodynamic polarization measurements indicated that the presence of ATD in these solutions greatly decreases cathodic, anodic and corrosion currents. Potentiostatic current-time measurements and SEM/EDX investigations also showed that the ATD molecules are strongly adsorbed on the copper surface preventing it from being corroded easily. EIS measurements revealed that the charge transfer resistance increases due to the presence of ATD, and this effect increases with oxygen content in the solution. Weight loss measurements gave an inhibition efficiency of about 83% with 1.0 mM ATD present, increasing to about 94% at the ATD concentration of 5.0 mM. Results together are internally consistent with each other, showing that ATD is a good mixed-type inhibitor for copper corrosion with its inhibition efficiency increasing in the order of oxygenated > aerated > de-aerated 3% NaCl solutions.  相似文献   

5.
The inhibition action of the citric acid and three surfactants: sodium dodecyl sulfate (SDS), t-octyl phenoxy polyethoxyethanol (Triton X-100), sodium dodecyl benzene sulphonate (SDBS) on the corrosion behavior and gas evolution of Pb-Sb-As-Se was investigated in 12.5 M H2SO4 solution with linear sweep polarization, cyclic voltammetry and weight loss measurements methods. The results drawn from different techniques are comparable. It was found that these surfactants and citric acid act as good inhibitors for the corrosion of lead alloy in H2SO4 solution. SDS inhibited most effectively the lead alloy corrosion among the three surfactants and citric acid. The inhibition efficiency for the inhibitors decreases in the order: SDS > SDBS > Triton X-100 > citric acid > blank. The inhibition efficiency increases with rising of the inhibitor concentration. In this work, the effect of the inhibitors on hydrogen and oxygen evolution was studied. In addition, it was found that the adsorption of used inhibitors on lead alloy surface follows Langmuir isotherm.  相似文献   

6.
The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc·S4·Na4) on mild steel in 1 mol/l HCl in the concentration range of 1.0 × 10−5 to 1.0 × 10−3 mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order of CuPc·S4·Na4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 × 10−3 mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds.  相似文献   

7.
2-amino-4-(4-bromophenyl)-8-methoxy-5,6-dihydrobenzo[h]quinoline-3-carbonitrile (ABDC) was synthesized by the reaction of (2E)-2-(4 bromobenzylidene) - 6 -methoxy-3,4-dihydronaphthalen-1(2H)-one (Chalcone) with malononitrile and ammonium acetate under microwave irradiation. Chalcone was synthesised by the reaction 4-bromobenzaldehyd, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one under the same condition. Structure of ABDC was conformed by 1H and 13C NMR, FT-IR, EI-MS spectral studies and elemental analysis. The electronic absorption and fluorescence spectra of ABDC have been studied in solvents of different polarities, and the data were used to study the solvatochromic properties such as excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield. The absorption maximum and fluorescence emission maximum was observed red shift when increase solvent polarity n-Hexane to DMSO. ABDC undergoes solubilization in different micelles and may be used as a probe and quencher to determine the critical micelle concentration (CMC) of CTAB and SDS. The anti-bacterial activity of chalcone and its cyclized product ABDC was tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria was determined with the reference of standard drug Tetracycline. Results showed that the ABDC is better anti-bacterial agent as compared to chalcone. The anti-bacterial activity was further supported by the quantum chemistry calculation.  相似文献   

8.
The effect of the addition of some tetrazolic type organic compounds: 1-phenyl-5-mercapto-1,2,3,4-tetrazole (PMT), 1,2,3,4-tetrazole (TTZ), 5-amino-1,2,3,4-tetrazole (AT) and 1-phenyl-1,2,3,4-tetrazole (PT) on the corrosion of brass in nitric acid is studied by weight loss, polarisation and electrochemical impedance spectroscopy (EIS) measurements. The explored methods gave almost similar results. Results obtained reveal that PMT is the best inhibitor and the inhibition efficiency (E%) follows the sequence: PMT > PT > AT > TTZ. Polarization measurements also indicated that tetrazoles acted as mixed-type inhibitors without changing the mechanism of the hydrogen evolution reaction. Partial π-charge on atoms has been calculated. Correlation between the highest occupied molecular orbital energy EHOMO and inhibition efficiencies was sought. The adsorption of PMT on the brass surface followed the Langmuir isotherm. Effect of temperature is also studied in the (25-50 °C) range.  相似文献   

9.
Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn2+, Mn2+ and Ce4+ ions in the concentration range 1-10 × 10−3 M has been found out. The corrosion behaviour of iron in 0.5 M H2SO4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce4+ ? Mn2+ > Zn2+.  相似文献   

10.
The corrosion inhibition of mild steel in 0.5 M hydrochloric acid solutions by some new hydrazine carbodithioic acid derivatives namely N′-furan-2-yl-methylene-hydrazine carbodithioic acid (A), N′-(4-dimethylamino-benzylidene)-hydrazine carbodithioic acid (B) and N′-(3-nitro-benzylidene)-hydrazine carbodithioic (C) was studied using chemical (weight loss) and electrochemical (potentiodynamic and electrochemical impedance spectroscopy, EIS) measurements. These measurements show that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follow the order C > B > A. Polarization studies show that these compounds act as mixed type inhibitors in 0.5 M HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. The electronic properties of these inhibitors, obtained using PM3 semi-empirical self-consistence field method, have been correlated with their experimental efficiencies using non-linear regression method.  相似文献   

11.
The efficiency of 3,5-bis(n-pyridyl)-1,3,4-oxadiazole (n-POX, n = 1, 2, 3), as corrosion inhibitors for mild steel in 1 M perchloric acid (HClO4) have been determined by weight loss measurements and electrochemical studies. The results show that these inhibitors revealed a good corrosion inhibition even at very low concentrations. Comparison of results among those obtained by the studied oxadiazoles shows that 3-POX was the best inhibitor. Polarisation curves indicate that n-pyridyl substituted-1,3,4-oxadiazoles are mixed type inhibitors in 1 M HClO4. The adsorption of these inhibitors follows a Langmuir isotherm model. The electronic properties of n-POX, obtained using the AM1 semi-empirical quantum chemical approach, were correlated with their experimental efficiencies using the linear resistance model (LR).  相似文献   

12.
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile(Ch-HPQ) thin films were determined in the frequency range of 0.5 k Hz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping(CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.  相似文献   

13.
Corrosion inhibition mechanism of two mercapto-quinoline Schiff bases, eg., 3-((phenylimino)methyl)quinoline-2-thiol (PMQ) and 3-((5-methylthiazol-2-ylimino)methyl) quinoline-2-thiol (MMQT) on mild steel surface is investigated by quantum chemical calculation and molecular dynamics simulation. Quantum chemical parameters such as EHOMO, ELUMO, energy gap (ΔE), dipolemoment (µ), electronegativity (χ), global hardness (η) and fraction of electron transfers from the inhibitor molecule to the metallic atom surface (ΔN) have been studied to investigate their relative corrosion inhibition performance. Parameters like local reactive sites of the present molecule have been analyzed through Fukui indices. Moreover, adsorption behavior of the inhibitor molecules on Fe (1 1 0) surface have been analyzed using molecular dynamics simulation. The binding strength of the concerned inhibitor molecules on mild steel surface follows the order MMQT>PMQ, which is in good agreement with the experimentally determined inhibition efficiencies. In view of the above, our approach will be helpful for quick prediction of a potential inhibitor from a lot of similar inhibitors and subsequently in their rational designed synthesis for corrosion inhibition application following a wet chemical synthetic route.  相似文献   

14.
Blue emitting 2-amino-4-(3, 4, 5-tri methoxyphenyl)-9-methoxy-5,6 dihydrobenzo[f]isoquinoline-1-carbonitrile (AMQC) dye was synthesized by one-pot multicomponent reactions (MCRs) of 3,4,5-trimethoxybenzaldehyd, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic and elemental analysis of synthesized AMQC was in good agreement with their chemical structures. Fluorescence polarity study demonstrated that AMQC was sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of AMQC. Dye undergoes solubilization in different micelles and may be used as a quencher and a probe to determine the critical micelle concentration (CMC) of SDS and CTAB. Nonlinear optical parameters of AMQC dye shows relatively lower nonlinear refractive index and nonlinear absorption coefficient at the power levels. Variation of n2 with concentration is linear in the concentration range used in the present study.  相似文献   

15.
The fluorescence characteristics of the Schiff bases 2-(3-pyridylmethyliminornethyl)phenol (1), 2-(2 pyridyliminomethyl)phenol (2), N.N-bis(salicylidene)-2,3-pyridinediamine (3), N,N'-bis(salicylidene)-2,6-pyridinediamine (4) and 2-(2-amino-4-methoxymethyl-6-methyl-3-pyridylmethyliminomethyl)phenol (5) were studied in various solvents at different pH values. Corresponding quantum efficiencies were determined. Compound 1, which showed a tendency towards tautomeric mterconversion to ketoamine in polar protic solvents, was not fluorescent at pH < 8. The fluorescence of other compounds was very sensitive to solvent polarity and the pH of the medium. Compounds 2-4, preferably present as enolimines in all solvents, were not fluorescent in non-polar and moderately polar solvents, whereas weak emission was observed in polar solvents, like methanol, dimethylformamide and dioxane/water 1/1 (0.001 < Q < 0.072). A significant increase in Stokes shifts and in quantum efficiencies was noted as a result of increasing polarity of dioxane/water mixtures, indicating specific interactions with polar water molecules. The emission was promoted at acidic pH values where a pyridinium cation was formed (0.061 < Q < 0.519, in dioxane/water 1/1 at pH 3.4). Compound 5, which was a tautomeric mixture of enoiimine and cyclic diamine in all solvents, was fluorescent in polar as well as in non-polar media. The quantum efficiency varied dependent on the solvent and pH (0.023 <Q< 0.435). The cyclic diamine, i. e. the more rigid structure was supposed to be responsible for the fluorescence in non-polar and aprotic solvents as well as at neutral, and weakly basic pH values.  相似文献   

16.
The corrosion inhibitive effect of 3-(3-oxo-3-phenyl-propenyl)-1H-quinolin-2-one (PPQ) and 3-(3-oxo-3-phenyl-propenyl)-1H-benzoquinolin-2-one (PPBQ) on high carbon steel (HCS) in 10 % HCl media was evaluated by chemical (weight loss) and electrochemical (electrochemical impedance spectroscopy and potentiodynamic polarization technique) measurements. The inhibition efficiencies obtained from weight loss and electrochemical measurements were in good agreement. The inhibition efficiency was found to increase with the increase in inhibitor concentration but decreased with rise in temperature. Potentiodynamic polarization studies revealed the mixed mode inhibition of inhibitors. The adsorption behavior of these inhibitors on the HCS surface was found to obey the Langmuir adsorption isotherm. The thermodynamic parameter values of free energy of adsorption (?G ads) and enthalpy of adsorption (?H ads) revealed that the inhibitor was adsorbed on the HCS surface via both chemisorption and physisorption mechanisms. The adsorption mechanism of inhibition was supported by spectroscopic techniques (UV–visible, FT-IR, and wide-angle X-ray diffraction), surface analysis (SEM–EDS), and adsorption isotherms.  相似文献   

17.
Energy level diagrams of 2-amino-4-methylphenol and its complexes with water are calculated by the method of intermediate neglect of differential overlap (INDO). It is demonstrated that the substitution by the amino group results in the dependence of the quantum fluorescence yield on the excitation energy. The decrease of the quantum fluorescence yield of 2-amino-4-methylphenol in going from hexane to water is explained. Complexing of the 2-amino-4-methylphenol molecule with water with the formation of the H-bond reduces the quantum fluorescence yield compared to the isolated molecule due to the increased efficiency of the S1 → T4 conversion.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 71–76, March, 2005.  相似文献   

18.
The gemini surfactant N-N′bis(dimethyldodecyl)-1,4-butanediammonium dibromide (12-4-12) was synthesized and its critical micelle concentrations (CMCs) and degree of counterion dissociation (α) in aqueous solutions in the presence of alkanols viz ethanol, isomeric butyl alcohols, 1-hexanol and alkanediols (ethanediol, 1,4-butanediol, 1,2-hexanediol, 2,5-hexanediol 1,6-hexanediol, and 1,8-octanediol) determined from electrical conductivity are reported. While ethanol, ethanediol, 1,4-butanediol showed an increase in CMC, a decrease was seen for isomeric butyl alcohols, 1-hexanol, isomeric hexanediols and 1,8-octanediol. For butyl alcohols the CMC decrease showed the trend 1° >2° > 3°; in C6 diols, 1,2-hexanediol exerted more decrease as compared to 2,5-hexanediol and 1,6-hexanediol.The results are explained on the basis of the structure and hydrophobicity of alcohols that determine their effect as cosolvent or cosurfactant (partitioning in micelles). Two-dimensional nuclear overhauser enhancement spectroscopy (2D-NOESY) was used to examine the location for 1-butanol and 1,4-butanediol in micellar systems as representative additives from alkanols and alkanediols showing CMC decreasing and increasing effect respectively.  相似文献   

19.
采用密度泛函理论B3LYP/6-31G(d)方法优化计算4种2,4-二甲基-7-氨基-1,8-萘啶衍生物分子结构,探讨了其分子结构与前线分子轨道、能量的关系。运用含时密度泛函理论(TD-DFT)计算了它们的气相和溶液相电子光谱,研究了溶剂模型和计算方法对理论光谱的影响。计算结果表明,4种萘啶衍生物均含离域π键,HOMO与LUMO能级差ΔE较小,且大小顺序与它们的最大吸收波长实验值变化趋势一致。理论电子光谱证实,1,8-萘啶衍生物的吸收光谱随共轭性增强逐渐红移, 最大吸收源自于HOMO→LUMO的π→π*电子跃迁。PCM-B3LYP/6-31+G(d)计算结果与实验值相比,最大吸收波长分别相差2.6,10.3,5.3和6.9 nm,能量相差0.03,0.09,0.04和0.08 eV。因此,在考虑溶剂效应条件下,采用B3LYP/6-31(d) 方法优化分子构型和TD-DFT方法获得的电子光谱与实验光谱具有一致性。  相似文献   

20.
The reinvestigation of the acid-promoted cyclization of 2-(2-oxo-2-arylethyl)malononitriles, in the presence of benzylamine or aniline, in ethanol or acetonitrile, has confirmed that this is a long-time reaction process for a low-yielding synthesis of 2-amino-5-arylfuran-3-carbonitriles (2), or 2-amino-5-aryl-1-phenyl-1H-pyrrole-3-carbonitriles (4), depending on the base used. However, the microwave-assisted synthesis of 2-amino-5-(4′-methoxyphenyl)furan-3(4)-(di)carbonitriles (2c and 3c) proceeds in shorter reaction times and higher yields than does the classical thermal heating protocol. In these reactions we have observed for the first time, and characterized by their spectroscopic data and X-ray analysis, the unexpected formation of 2-amino-5-aryl-3 (4)-(di)carbonitriles (3), whose formation has been rationalized by density functional theory (DFT) analysis of the proposed reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号