首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
本文简要阐述了全固态锂离子电池的特点及其内部热输运研究的意义.介绍并总结了国内外与正极材料、负极材料、固态电解质,以及电极与电解质界面热输运性质相关的实验和理论工作.针对脱嵌锂过程对电极材料热导率的影响机理尚不明确,非晶态转变对电极材料热输运研究的挑战,界面热输运模型与方法不足等问题,系统梳理了全固态锂离子电池内部热输运的重要前沿科学问题.  相似文献   

2.
尖晶石LiMn2O4(以下简称LMO)是锂离子电池正极材料之一,具有价格低廉,资源丰富的特点。锂离子电池的充放电过程实际上是锂离子从正极脱嵌、再嵌入正极的过程。因此Li^ 在正负极材料及电解液中的扩散性能影响着电池的电性能,通过其电化学阻抗谱可得出锂离子的扩散系数及电导率等参数。  相似文献   

3.
锂离子电池相关材料的Raman光谱学研究   总被引:2,自引:2,他引:0  
锂离子电池是目前综合性能最好的可充电池。本文总结我们实验室用Raman光谱学研究锂离子电池相关材料的一些结果 ,包括聚合物电解质的微结构和离子输运机制 ,低温热解碳负极材料的结构表征和锂离子在其中的嵌入 /脱出机理 ,元素替代引起正极材料LiMn2 O4的结构变化以及在充放电过程中电极 /电解质界面形成的钝化层的性质及其对电池性能的影响  相似文献   

4.
白莹  吴锋  吴川 《光散射学报》2003,15(4):231-236
采用固相反应与液相反应,合成了新型锂离子电池正极材料LiMPO4(M=Fe,Mn)。粉末X光衍射表明材料均为纯相。对材料的显微拉曼光谱和红外光谱进行了研究和指认。循环伏安研究表明,含锂磷酸盐是一类有潜力的锂离子电池正极材料。  相似文献   

5.
在能量存储技术中,锂离子电池是高能量密度的电化学电源.以碳为负极材料,涂膜制备了负极片,以锂片为正极片制备了CR2016锂离子电池,并对其性能进行了测试,分析了碳粉为锂电负极材料的特性.  相似文献   

6.
废旧锂离子电池不仅造成了严重的资源浪费同时还带来严重的环境污染问题。传统锂离子电池材料回收方法存在高能耗、高成本以及二次污染等不足。本文成功制备出乙二醇/氯化锌低共熔溶剂(DES),利用其对金属氧化物优秀的溶解能力,用于三元锂离子电池正极材料有价金属的回收,并分析了不同氯化锌浓度对低共熔溶剂热物性及其浸取能力的影响,对绿色环保回收三元锂离子电池正极材料提供了新的思路。  相似文献   

7.
开发高能量密度、长循环寿命、低成本和高安全性的全固态锂电池是发展下一代锂离子电池的重要方向之一.富锂层状氧化物正极材料由于阴阳离子协同参与氧化还原反应,可以提供更高的放电比容量(>250 mAh/g)和能量密度(>900 Wh/kg),将其应用于全固态锂电池中有望推动锂离子电池能量密度突破500 Wh/kg的中长期目标.然而,富锂正极材料的电子导电性差、阴离子氧的不可逆氧化还原反应以及循环中的结构相变,导致该材料在电化学循环过程中存在初始库仑效率低、循环稳定性差和电压衰退等问题.此外,富锂正极材料的工作电压较高(>4.5 V vs.Li/Li+),使正极/电解质之间不仅面临常规的界面化学反应,释放的氧还会加剧界面的电化学反应,对正极/电解质的界面稳定性提出了更高的要求.因此,富锂正极材料的本征特性和富锂正极/电解质间严重的界面反应极大限制了富锂正极材料在全固态锂电池中的应用.本文首先详细阐述了富锂正极材料在全固态锂电池中的失效机制,其次综述了近年来富锂正极材料在不同固态电解质体系下的研究进展,最后总结和展望了富锂全固态锂电池未来的研究重点和发展方...  相似文献   

8.
在过去的二十年里,单斜型磷酸钒锂作为一种有前景的锂离子电池正极材料被广泛研究.固体核磁共振技术是一种研究原子局部环境和运动性,并能反映材料中长程/短程有序结构变化的有力表征手段,可以从多个角度满足磷酸钒锂材料的研究需求.本文从充放电机理、锂离子的迁移率和动力学、碳包覆、阳离子掺杂等方面简要介绍了固体核磁共振技术在单斜磷酸钒锂正极材料研究中的应用,同时涵盖了相关的理论计算工作.  相似文献   

9.
电动汽车与锂离子电池   总被引:2,自引:0,他引:2  
文章简要介绍了混合动力汽车、插电式混合动力汽车、纯电动汽车和锂离子动力电池及其关键材料。发展电动汽车可以大幅度降低人们对石油的依赖和改善城市空气质量。锂离子电池性能优越,为电动汽车的发展提供了支撑。近期,新一代锂离子动力电池正极材料即将走向应用,可使电动汽车里程增加一倍,材料选择和电池设计及制造工艺与电池储存能量、寿命、安全等密切相关,尊道而重德,可做出“好”电池。  相似文献   

10.
采用火焰原子吸收光谱法测定锂离予电池正极材料LiMn2O4中杂质Na的含量.综合考虑了消电离剂氯化铯、盐酸浓度、基体对测Na产生的影响,通过控制酸的浓度和在标准溶液中加入定量基体和消电离剂氯化铯来消除测定误差.由实验结果可知本方法简便易行,灵敏度和准确度高,精密度好,回收率在96.2%-103.8%之间,相对标准偏差(RSD)小于2%(n=10),能够满足锂离子电池正极材料分析的要求.  相似文献   

11.
锂离子电池中的物理问题   总被引:9,自引:0,他引:9  
陈立泉 《物理》1998,27(6):354-357
锂离子电池是一种性能优越的新型可充放电池.文章在简述了它的原理和特性之后,着重介绍了所涉及的一些物理问题,诸如嵌入物理、载流子输运、渗流、分形和相变等,以期对锂离子电池有更深入的理解  相似文献   

12.
锂电池失效分析与研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
王其钰  王朔  周格  张杰男  郑杰允  禹习谦  李泓 《物理学报》2018,67(12):128501-128501
锂电池在使用或储存过程中会出现一定概率的失效,包括容量衰减(跳水)、循环寿命短、内阻增大、电压异常、析锂、产气、漏液、短路、变形、热失控等,严重降低了锂电池的使用性能、一致性、可靠性、安全性.对锂电池失效进行准确诊断并探究其失效机理是锂电池失效分析的主要任务,对锂电池性能提升和技术发展具有深远意义.为了全面且深入地介绍锂电池失效分析,本文从锂电池失效分析的定义、失效表现、失效原因、分析内容、分析流程、困难点等方面进行了简述,希望能为推动中国锂电池失效分析技术的发展起到积极作用.  相似文献   

13.
锂电池发展简史   总被引:7,自引:0,他引:7  
黄彦瑜 《物理》2007,36(8):643-651
由于具有很高的能量密度,锂金属在1958年被引入电池领域,1970年进入锂一次电池的商业研发阶段。自1990年以来,随着正极材料、负极材料与电解质的革新,可充放二次锂电池不断发展并实现商品化。如今锂电池技术仍在继续发展并将进一步改善人类生活。文章对40多年来锂电池技术发展历程进行了简单的回顾。  相似文献   

14.
锂离子电池多尺度数值模型的应用现状及发展前景   总被引:1,自引:0,他引:1       下载免费PDF全文
程昀  李劼  贾明  汤依伟  杜双龙  艾立华  殷宝华  艾亮 《物理学报》2015,64(21):210202-210202
锂离子电池是一种较为复杂的电化学系统, 其涵盖质量传递、电荷传递、热量传递以及多种电化学反应等物理化学过程. 其不仅物理尺度跨越大, 从微观活性颗粒、极片、电芯跨越到电池模组, 还面临着成组配对以及均衡性的问题, 这些问题加剧了电池设计和性能综合评估的难度. 通过计算机数值仿真技术, 建立数学模型, 全面和系统地捕捉电池工作过程各物理场的相互作用机理, 分析其演化规律, 能够为优化电池系统设计提供理论支撑. 本文对锂离子电池的数值模型研究进展和发展趋势进行了综述. 同时对主要理论模型进行了分类整理, 总结了它们的特点、适用范围和局限性, 指出了将来进一步研究的方向和难点所在, 这些对锂离子电池多尺度数值模型的理论研究和工程应用都具有指导性的意义.  相似文献   

15.
碳负极材料作为锂/钠离子电池的传统负极材料一直获得广泛的推广和应用,但其仍存在充电时间长、库伦效率低等问题,研究碳负极材料充放电机理是解决这些问题的关键.固体核磁共振(NMR)技术是一种研究固体材料中目标原子所处化学环境以及材料内部结构变化的有效手段.通过测定锂/钠离子电池中6Li、7Li和23Na高速魔角旋转(MAS)条件下的固体NMR谱图,能够清晰获得锂/钠离子电池碳负极脱/嵌过程中的结构变化,以及碳原子与Li/Na的配位情况,从而为碳负极材料的设计及其电化学性能的提升提供充分的理论依据.本文综述了近年来固体NMR技术在锂/钠离子电池碳负极材料研究中的应用以及相关研究进展.  相似文献   

16.
Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together.Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example,secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted.  相似文献   

17.
The physics that associated with the performance of lithium secondary batteries (LSB) are reviewed. The key physical problems in LSB include the electronic conduction mechanism, kinetics and thermodynamics of lithium ion migration, electrode/ electrolyte surface/interface, structural (phase) and thermodynamics stability of the electrode materials, physics of intercalation and deintercalation. The relationship between the physical/chemical nature of the LSB materials and the batteries performance is summarized and discussed. A general thread of computational materials design for LSB materials is emphasized concerning all the discussed physics problems. In order to fasten the progress of the new materials discovery and design for the next generation LSB, the Materials Genome Initiative (MGI) for LSB materials is a promising strategy and the related requirements are highlighted.  相似文献   

18.
黄亮  姚畅 《化学物理学报》2017,30(5):547-552
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.  相似文献   

19.
In recent years, lithium ion (Li-ion) batteries have served as significant power sources in portable electronic devices and electric vehicles because of their high energy density and rate capability. There are growing concerns towards the safety of Li-ion batteries, in which thermal conductivities of anodes, cathodes, electrolytes and separator play key roles for determining the thermal energy transport in Li-ion battery. In this review, we summarize the state-of-the-art studies on the thermal conductivities of commonly used anodes, cathodes, electrolytes and separator in Li-ion batteries, including both theoretical and experimental reports. First, the thermal conductivities of anodes and cathodes are discussed, and the effects of delithiation degree and temperature of materials are also discussed. Then, we review the thermal conductivities of commonly used electrolytes, especially on solid electrolytes. Finally, the basic concept of interfacial thermal conductance and simulation methods are presented, as well as the interfacial thermal conductance between separator and cathodes. This perspective review would provide atomic perspective knowledge to understand thermal transport in Li-ion battery, which will be beneficial to the thermal management and temperature control in electrochemical energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号