首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We discuss the short-and long-term perspectives of the CRESST (Cryogenic Rare Event Search using Superconducting Thermometers) project and present the current status of the experiment and new results concerning detector development. In the search for elementary particle dark matter, CRESST is presently the most advanced deep underground, low-background, cryogenic facility. The basic technique involved is to search for WIMPs (Weakly Interacting Massive Particles) by the measurement of nonthermal phonons, as created by WIMP-induced nuclear recoils. Combined with our newly developed method for the simultaneous measurement of scintillation light, strong background discrimination is possible, resulting in a substantial increase in WIMP detection sensitivity. This will allow a test of the reported positive evidence for a WIMP signal by the DAMA Collaboration in the near future. In the long term, the present CRESST setup permits the installation of a detector mass up to 100 kg. In contrast to other projects, CRESST technology allows the employment of a large variety of detection materials. This offers a powerful tool in establishing a WIMP signal and in investigating WIMP properties in the event of a positive signal.  相似文献   

2.
盛祥东  何会林  戴长江 《物理》2002,31(9):577-580
暗物质问题目前已受到物理学界的高度关注,因为这一课题的研究和进展,将直接影响到粒子物理、天体物理和宇宙学的发展方向。当前世界上已有一些大的实验组正在开展这方面的研究工作,并已取得了一定的结果;文章重点介绍两个重要的探测实验,即中意合作DAMA组(Dark Matter Group)100kg Nal(Tl)探测器阵列实验和美国的CDMS(Cold Dark Matter Search)实验组的低温探测器实验。详细介绍了DAMA实验的物理分析方法及其实验结果,并同CDMS实验结果进行了相应的比较。  相似文献   

3.
We present a new Germanium Dark Matter Experiment. It consists of two HPGe-Detectors which are run in a unique configuration. The anticoincidence between the two detectors will further reduce the background that we achieve now in the Heidelberg-Moscow-Experiment and will allow to improve WIMP cross section limits to a level comparable to planned cryogenic experiments. This should also allow to test recently claimed positive evidence for dark matter by the DAMA experiment.We show first detector performances from the test period in the Heidelberg Low Level Laboratory and give a preliminary estimation for the background reduction efficiency. The HDMS experiment in being built up now in the Gran Sasso Underground Laboratory and will start taking data by the end of this year.For a substantial improvement of the WIMP-nucleon cross section limits, future dark matter experiments will have to be either massive direction-sensitive detectors or massive ton-scale detectors with almost zero background. A proposal for a high mass (1 ton) Ge experiment with a much further reduced background is the Heidelberg GENIUS experiment. GENIUS will be able to give a WIMP limit of the order 0.02 counts/day/kg and additionally to look for the annual modulation WIMP-signature by using raw data without subtraction.  相似文献   

4.
The aim of CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) is to search for particle dark matter via elastic scattering off nuclei. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and it uses low-background cryogenic detectors with superconducting phase-transition thermometers for the direct detection of WIMP-nucleus scattering events.  相似文献   

5.
We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from weakly interacting massive particles (WIMPs) with masses below ~10 GeV/c(2). This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c(2) and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.  相似文献   

6.
The European Physical Journal C - CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic...  相似文献   

7.
Recent N-body simulations are in favor of the presence of a co-rotating Dark Disk that might contribute significantly (10%–50%) to the local Dark Matter density. Such substructure could have dramatic effect on directional detection. Indeed, in the case of a null lag velocity, one expects an isotropic WIMP velocity distribution arising from the Dark Disk contribution, which might weaken the strong angular signature expected in directional detection. For a wide range of Dark Disk parameters, we evaluate in this Letter the effect of such dark component on the discovery potential of upcoming directional detectors. As a conclusion of our study, using only the angular distribution of nuclear recoils, we show that Dark Disk models as suggested by recent N-body simulations will not affect significantly the Dark Matter reach of directional detection, even in extreme configurations.  相似文献   

8.
The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.  相似文献   

9.
RUPAK MAHAPATRA 《Pramana》2012,79(5):1045-1057
Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of dark matter. The nature of dark matter is yet to be discovered and is one of the biggest questions in physics. Particle physics combined with astrophysical measurements of the abundance gives rise to a dark matter candidate called weakly interacting massive particle (WIMP). The low density of WIMPs in the galaxies and the extremely weak nature of the interaction with ordinary matter make detection of the WIMP an extraordinarily challenging task, with abundant fakes from various radioactive and cosmogenic backgrounds with much stronger electromagnetic interaction. The extremely weak nature of the WIMP interaction dictates detectors that have extremely low naturally occurring radioactive background, a large active volume (mass) of sensitive detector material to maximize statistics, a highly efficient detector-based rejection mechanism for the dominant electromagnetic background and sophisticated analysis techniques to reject any residual background. This paper reviews currently available major technologies being pursued by various collaborations, with special emphasis on the cryogenic Ge detector technology used by the Cryogenic Dark Matter Search Collaboration (CDMS).  相似文献   

10.
The EDELWEISS experiment is aimed at direct searches for nonbaryonic cold dark matter by means of cryogenic germanium detectors. It is deployed at the LSM underground laboratory in the Frejus tunnel, which connects France and Italy. The results of the experimentmade it possible to set a limit on the spin-independent cross section for the scattering of weak-interacting massive particles (WIMP) at a level of 10?6 pb. Data from 21 detectors of total mass about 7 kg are being accumulated at the present time.  相似文献   

11.
We study the fluxes of anti-deuterons that could be produced by annihilations in the galactic halo of Dark Matter particles with multi-TeV mass and a large annihilation cross section, as indicated by the recent PAMELA results. The model of Minimal Dark Matter (MDM) is an example in this category. We find that the fluxes are well within the reach of planned experiments for DM candidates that annihilate mainly into quark pairs, and also extend into the multi-GeV range above the expected astrophysical background. They are instead less promising if the main annihilation channel is into gauge bosons.  相似文献   

12.
Directional detection of Galactic Dark Matter is a promising search strategy for discriminating WIMP events from background. Technical progress on gaseous detectors and read-outs has permitted the design and construction of competitive experiments. However, to take full advantage of this powerful detection method, one need to be able to extract information from an observed recoil map to identify a WIMP signal. We present a comprehensive formalism, using a map-based likelihood method allowing to recover the main incoming direction of the signal and its significance, thus proving its Galactic origin. This is a blind analysis intended to be used on any directional data. Constraints are deduced in the (σn,mχσn,mχ) plane and systematic studies are presented in order to show that, using this analysis tool, unambiguous Dark Matter detection can be achieved on a large range of exposures and background levels.  相似文献   

13.
The DAMA project is an observatory for rare processes and it is operative deep underground at the Gran Sasso National Laboratory of the I.N.F.N. In particular, the DAMA/LIBRA (Large sodium Iodide Bulk for RAre processes) set-up consists of highly radiopure NaI(Tl) detectors for a total sensitive exposed mass of ?250 kg. Recent results, obtained by this set-up by exploiting the model independent annual modulation signature of Dark Matter (DM) particles, have confirmed and improved those obtained by the former DAMA/NaI experiment. A model independent evidence for the presence of Dark Matter particles in the galactic halo is cumulatively obtained at 8.2?σ C.L. No systematics or side reactions able to account for the measured modulation amplitude and to contemporaneously satisfy all the many specific requirements of the signature have been found or suggested by anyone over more than a decade. An example of one of the many possible model dependent corollary quests for the candidate particles and for the related astrophysical, nuclear and particle physics scenarios is presented considering the whole cumulative exposure. Future perspectives are shortly addressed.  相似文献   

14.
We extend the analysis of asymmetric Dark Matter relic density with the Sommerfeld enhancement to the case where the mediator is massive. In asymmetric Dark Matter models, asymmetric Dark Matter is assumed to couple to the light scalar or vector boson. Asymmetric Dark Matter annihilation cross section is enhanced by the Sommerfeld effect which exists due to the distortion of the wavefunction of asymmetric Dark Matter particle and anti–particle by long–range interactions. The impacts of the Sommerfeld enhancement on the relic densities of asymmetric Dark Matter particle and anti–particle are discussed. The effect of kinetic decoupling on the relic density is also probed when the annihilation cross section is boosted by the Sommerfeld enhancement. Finally, the constraints on the parameter space are given using the observational data of the relic density of Dark Matter.  相似文献   

15.
We discuss the relic abundance of asymmetric Dark Matter particles in modified cosmological scenarios where the Hubble rate is changed with respect to the standard cosmological scenario. The modified Hubble rate leaves its imprint on the relic abundance of asymmetric Dark Matter particles if the asymmetric Dark Matter particles freeze-out in this era. For generality we parameterize the modification of the Hubble rate and then calculate the relic abundance of asymmetric Dark Matter particles and anti-particles. We find the abundances for the Dark Matter particles and anti-particles are enhanced in the modified cosmological models. The indirect detection signal is possible for the asymmetric Dark Matter particles due to the increased annihilation rate in the modified cosmological models. Applying Planck data, we find the constraints on the parameters of the modified cosmological models.  相似文献   

16.
The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data, accounting for the neutron background, give limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV/c2 WIMP mass and, at >75% C.L., the entire 3sigma allowed region for the WIMP signal reported by the DAMA experiment.  相似文献   

17.
We present an extensive analysis of a model in which the (Majorana) Dark Matter candidate is a mixture between a SU(2) singlet and two SU(2) doublets. This kind of setup takes the name of singlet-doublet model. We will investigate in detail an extension of this model in which the Dark Matter sector interactions with a 2-doublet Higgs sector enforcing the complementarity between Dark Matter phenomenology and searches of extra Higgs bosons.  相似文献   

18.
A good understanding of electroluminescence is a prerequisite when optimising double-phase noble gas detectors for Dark Matter searches and high-pressure xenon TPCs for neutrinoless double beta decay detection.A simulation toolkit for calculating the emission of light through electron impact on neon, argon, krypton and xenon has been developed using the Magboltz and Garfield programs. Calculated excitation and electroluminescence efficiencies, electroluminescence yield and associated statistical fluctuations are presented as a function of electric field. Good agreement with experiment and with Monte Carlo simulations has been obtained.  相似文献   

19.
Relic abundance of asymmetric Dark Matter particles in brane world cosmological scenario is investigated in this article. Hubble expansion rate is enhanced in brane world cosmology and it affects the relic abundance of asymmetric Dark Matter particles. We analyze how the relic abundance of asymmetric Dark Matter is changed in this model. We show that in such kind of nonstandard cosmological scenario, indirect detection of asymmetric Dark Matter is possible if the cross section is small enough which let the anti-particle abundance kept in the same amount with the particle. We show the indirect detection signal constraints can be used to such model only when the cross section and the 5-dimensional Planck mass scale are in appropriate values.  相似文献   

20.
A novel experiment for direct search for Dark Matter with liquid argon double-phase chamber with a mass of liquid Ar up to several hundred tons is proposed. To suppress the β, γ and n 0 backgrounds, the comparison of scintillation and ionization signals for every event is suggested. The addition in liquid Ar of photosensitive Ge(CH3)4 or C2H4 and suppression of triplet component of scintillation signals ensures the detection of scintillation signals with high efficiency and provides a complete suppression of the electron background. For the detection of photoelectrons and ionization electrons, highly stable and reliable GEM detectors must be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号