首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 599 毫秒
1.
用B3LYP/6 31+G(d)和MP2 (Full) /6 31+G(d)优化ClONO2 及其分解反应和异构化反应的过渡态和产物的分子结构 .在B3LYP/6 31+G(d)水平上计算了相关分子的振动频率 .ClONO2 的几何结构、振动频率和红外强度与实验测量值符合得很好 .找到了未曾报道的立体异构体 .对这一立体异构体进行了高级别理论方法CCSD(T) /6 311G(d)和QCISD(T) /6 311G(d)的几何结构优化和振动频率计算 ,表明它是一个稳定的立体异构体 .在所研究的几种反应中 ,ClONO2 分解为NO2 +ClO是最容易进行的反应 .而ClONO2 异构为立体异构体的反应是最难进行的反应 .其所需克服的过渡态的能垒为 4 81.5 2kJ/mol,而反应吸收能量为 2 99.85kJ/mol.次难进行的是ClONO2 经TS1到反应中间体M1,再经TS12而分解为ClNO +O2 的反应 .这个反应通道所需克服过渡态的能垒为 4 2 1.5 5kJ/mol,反应吸收能量为 15 7.98kJ/mol.从以上分析可知 ,和ClO +NO2 反应生成ClONO2 比较 ,ClONO2 具有较好的稳定性 .  相似文献   

2.
采用密度泛函理论(DFT)中的UB3LYP方法在6-311 G(2d,2p)水平上研究了五重态和三重态的FeCH2与H2反应的机理,在UB3LYP结构优化的基础上,用耦合簇理论方法UCCSD(T)在相同水平下对各驻点进行了单点能校正.结果表明,该反应在三重态和五重态上的势能面非常相似,存在两个过渡态(TS1、TS2)和两个中间体(M1、M2).反应的第一步是产生分子复合物(H2)FeCH2,其能量分别比反应物低16.6(五重态)和20.3kJ/mol(三重态);第二步是H2的加成形成HFeCH3中间体,第三步是CH4的消除反应.其中CH4的消除为整个反应的速控步骤.H-H键的活化在五重态上是不可逆的,反应将最终形成五重态产物,整个反应可放出能量300.6kJ/mol.  相似文献   

3.
采用MP2/6-31G(d,p)从头计算方法优化获得硝基胍两种异构体及过渡态的几何结构,在相同水平上计算了各驻点频率,并进行了IRC分析.利用过渡态理论,计算了在200~1773K的H迁移异构化反应的速率常数.结果表明,β型硝基胍中形成大范围的离域大∏键,存在显著的共轭效应使其比α型稳定,能量比α型低28.16kJ/mol;硝基胍由α型向β型H迁移异构化反应的活化能为132.95kJ/mol.298K时速率常数为1.99×10-11s-1,平衡常数为1.00×105;硝基胍的异构化是一个典型的同面H迁移放热反应,随温度升高,平衡常数逐渐减小,不利于α型通过H迁移向β型转化.  相似文献   

4.
利用高里德堡态氢原子飞行时间 (HRTOF)探测技术 ,研究了正丙醇和异丙醇的紫外光解动力学过程 .在 193.3nm光辐射下 ,O -H键快速断裂过程构成主要的氢原子生成通道 .伴随O -H键的碎裂 ,相当大的一部分能量转换成氢原子及其相应碎片的平动能 (正丙醇〈fv〉 =0 .76 ;异丙醇〈fv〉 =0 .78) .氢原子碎片具有各向异性的角度分布 ;其角分布异向因子 β分别为 - 0 .79(正丙醇 )和 - 0 .77(异丙醇 ) .研究结果表明 ,吸收 1个 193.3nm光子后 ,丙醇分子跃迁到一个寿命很短的电子激发态 ;沿着O -H反应坐标 ,该激发态势能面是排斥的 ,因而O -H键快速断裂 .此外 ,还得到了丙醇的O -H键离解能 :(432± 2 )kJ/mol(正丙醇 )和 (433± 2 )kJ/mol(异丙醇 ) .  相似文献   

5.
CoCH2+H2反应机理的密度泛函理论研究   总被引:1,自引:1,他引:0  
采用密度泛函理论(DFT)中的UB3LYP方法在6-311+G(2d,2p)水平上研究了四重态和二重态的CoCH2与H2反应的机理,在UB3LYP结构优化的基础上用耦合簇理论方法UCCSD(T)在相同水平下对各驻点进行了单点能校正.结果表明,该反应在二重态和四重态上的势能面非常相似,存在两个过渡态(TS1、TS2)和两个中间体(M1、M2),反应的第一步是产生分子复合物(H2)CoCH2,其能量分别比反应物低66.6(四重态)和42.4 kJ/mol(二重态),第二步是H2的加成形成HCoCH3中间体,第三步是CH4的消除反应.其中CH4的消除为整个反应的速控步骤.反应在二重态和四重态势能面上存在四个交叉点,整个反应在二重态势能面和四重态势能面上交替进行.H-H键的活化在四重态上是不可逆的,反应将最终形成四重态产物,整个反应可放出能量222.9kJ/mol.  相似文献   

6.
采用量子化学的密度泛函理论(DFT),在B3LYP/6 31G*水平上研究了(4 溴甲基双环[4. 4. 1] 1, 3, 5,7, 9 十一碳五烯基3 )甲醇环氧化反应机理,在对反应物和产物几何结构优化的基础上,搜索优化了反应的过渡态结构,通过振动分析和内禀反应坐标(IRC)跟踪方法对过渡态及其所处的反应路径进行了确认,并用电荷密度拓扑分析方法考察了反应过程中旧键断裂和新键形成的细节.计算结果表明,该反应中的消除反应和成环反应是协同进行的,溴化氢消除反应中的氢来自与O( 22 )相连的羟基氢,反应的活化势垒为139. 2kJ/mol,反应放热25. 1kJ/mol.  相似文献   

7.
采用密度泛函理论(DFT)中的UB3LYP方法在6-311+G(2d,2p)水平上研究了四重态和二重态的CoCH2与H2反应的机理,在UB3LYP结构优化的基础上用耦合簇理论方法UCCSD(T)在相同水平下对各驻点进行了单点能校正。结果表明,该反应在二重态和四重态上的势能面非常相似,存在两个过渡态(TS1、TS2)和两个中间体(M1、M2),反应的第一步是产生分子复合物(H2) CoCH2,其能量分别比反应物低66.6(四重态)和42.4kJ/mol(二重态),第二步是H2的加成形成HCoCH3中间体,第三步是CH4的消除反应。其中CH4的消除为整个反应的速控步骤。反应在二重态和四重态势能面上存在四个交叉点,整个反应在二重态势能面和四重态势能面上交替进行。H-H键的活化在四重态上是不可逆的,反应将最终形成四重态产物,整个反应可放出能量222.9kJ/mol。  相似文献   

8.
采用密度泛函理论研究了中性循环中Ir(CO)_3I催化甲醇羰基化制乙酸的反应机理,计算得到了反应路径上各驻点的几何构型与频率,通过能量和振动分析证实了过渡态的真实性.结果表明,Ir(CO)_2I与CH_3I作用后,亲核加成过程出现反应路径中最大能垒(40. 3 kJ/mol),使用能量跨度模型分析了反应过程的动力学信息,确定了反应的能量跨度和决速中间体和决速过渡态分别为IM1和TS12,亲核加成过程为反应的决速步骤,得到了298 K催化剂的转化频率3. 2×10~(-6)s~(-1).  相似文献   

9.
用密度泛函理论方法 (B3LYP) ,在 6 311+G(d ,p)水平上对硝酸溴与三重态氧原子的反应进行了研究 ,计算了反应中各驻点物种的平衡构型、振动频率、总能量和零点能 (ZPE) .对计算得到各可能反应途径的过渡态经内禀反应坐标分析加以了证实 ,对反应途径中的键长和能量的变化作了IRC解析 .在B3LYP优化的基础上利用了耦合簇理论方法 (CCSD(T) )在 6 311+G(d ,p)水平上对各驻点物种的单点能进行了修正 .研究表明 ,存在三种可能的反应途径 ,其产物分别为 :cis BrONO和 3 O2 、trans BrONO和 3 O2 以及BrOO和NO2 .其中第三个通道由于活化能垒较低 ,是主要反应 .  相似文献   

10.
在G2 (B3LYP/MP2 /CC)理论水平上研究了CH(X2 ∏ )自由基与氧化二氮 (NNO)分子的反应 .计算了反应体系的最低二重态势能面上各驻点的构型参数、振动频率和能量 ,揭示了此反应存在两种机理和六个通道 .其中HC和NNO复合 ,生成中间体HC(N)NO ,解离得到产物HCN +NO ,这是最主要的通道之一 ;HC插入NO键 ,克服 38.9kJ/mol的势垒 ,产生富能的中间体HC(O)NN ,预测了五个反应通道 ,其中主要反应通道为 :NN +HCO .  相似文献   

11.
采用密度泛函理论中杂化密度泛函B3LYP/6-311G(d,p)方法,对(LiH)_n(n=1~5)团簇结构进行计算,得到最稳定构型,并计算分析其与NH_3的反应机理.对各反应的中间体和过渡态进行频率分析和内禀反应坐标(IRC)计算,以验证反应的正确性.用QCISD/6-311G(d,p)方法计算各驻点的单点能,得到能量信息.结果表明:各反应所释放H_2中的两个氢原子分别来源于NH_3和(LiH)_n(n=1~5)团簇.弱化N-H键的作用有利于反应能垒的降低,是反应脱氢的关键.LiH团簇尺寸变化对反应能垒没有太大影响.  相似文献   

12.
氧与次溴酸反应理论研究   总被引:1,自引:0,他引:1  
用密度函数理论(DFT)对象原子与次溴酸HOBr在势能面上的反应进行了研究,用B3LYP方法计算了势能面上各驻点物种的参数、能量等。结果表明:O与HOBr的势参能面上有两通道,简单可概括为摘H和摘Br反应,两通道的产物,均为HO、BrO。计算出反应热为42.3kJ/mol,根据等链反应特点,得到HOBr的生成热为-41.4kJ/mol。  相似文献   

13.
We used a combined quantum mechanics and molecular mechanics(QM/MM) method to investigate the solvent effects and potential of mean force of the CH_3F+CN~- reaction in water. Comparing to gas phase, the water solution substantially affects the structures of the stationary points along the reaction path. We quantitatively obtained the solvent effects' contributions to the reaction: 1.7 kcal/mol to the activation barrier and -26.0 kcal/mol to the reaction free energy.The potential mean of force calculated with the density functional theory/MM theory has a barrier height at 19.7 kcal/mol,consistent with the experimental result at 23.0 kcal/mol; the calculated reaction free energy at -43.5 kcal/mol is also consistent with the one estimated based on the gas-phase data at -39.7 kcal/mol.  相似文献   

14.
采用密度泛函理论方法对聚对苯二甲酸丁二醇酯(PBT)二聚体的键离能进行了计算.为了选取较为精确的方法来计算PBT各个键的键离能,以与PBT具有相同的酯基官能团的乙酸乙酯为模型参照物.采用M062X, B3P86, M06, PBE0, wB97xD方法分别在基组6-31G(d), 6-311G(d), 6-311+G(d, p), 6-311++G(d, p), cc-pVDZ, cc-pVTZ水平下对乙酸乙酯的键离能进行计算.通过对比计算结果与iBonD数据库的乙酸乙酯实验测定值可知,M062X在基组6-311G(d)水平下计算结果与实验值最为接近.因此,本研究采用M062X方法在基组6-311G(d)水平下对聚对苯二甲酸丁二醇酯(PBT)二聚体的键离能进行计算.计算结果表明:在PBT的各键中C-Carcmatic键的键离能最大,主链上的C-C键离能最小,为370.9 kJ/mol.其次就是C-O键,为404.6 kJ/mol.基于PBT键离能的计算结果,设计了3条PBT二聚体热降解过程可能形成的反应路径,分析了热解产物的形成机理.结果表明PBT二聚体热解过程可...  相似文献   

15.
使用密度泛函理论B3LYP/6-311+ G(2d,2p)研究了过氧硝酸的最低能量结构.采用耦合簇方法CCSD(T)/aug-cc-pVDZ首次分别扫描了过氧硝酸沿氧-氮和氧-氧键的分解势能面.计算结果表明在氧-氮势能面上,当O3—N4键长是2.82 ?时,对应的疏松过渡态的能垒是25.6 kcal/mol;在氧$-$氧键的势能面上,当O2—O3键长是2.35 ?时,对应的疏松过渡态的能垒是37.4 kcal/mol.这表明过氧硝酸更容易分解为HO2和NO2.  相似文献   

16.
利用量子化学从头计算的方法对甲基乙烯醚的两个异构体之间的转化,羟基与顺式-甲基乙烯醚和反式-甲基乙烯醚的加成反应,以及羟基提取甲基上的氢原子的反应机理进行了研究.研究结果表明:顺式-甲基乙烯醚比反式-甲基乙烯醚更加稳定,在QCISD/6-31G(d,P)//BHandHLYP/6.311 G(d,P)理论水平下,OH加到顺式-甲基乙烯醚1号住的碳原子上需要跨越的能垒比其它反应通道需要跨越的能垒少7.5~34 KJ/mol,因此是主要的反应通道,而OH加在反式.甲基乙烯醚2号位的碳原子上所需要跨越的能垒比其它反应路径所需要跨越的能垒少8.3~26.7 kJ/mol,因此是主要的反应路径.利用经典过渡态理论计算了总的速率常数  相似文献   

17.
We discuss problems related to in silico studies of enzymes and show that accurate and converged free energy changes for complex chemical reactions can be computed if a method based on a thermodynamic cycle is employed. The method combines the sampling speed of molecular mechanics with the accuracy of a high-level quantum mechanics method. We use the method to compute the free energy barrier for a methyl transfer reaction catalyzed by the enzyme catechol O-methyltransferase at the level of density functional theory. The surrounding protein and solvent are found to have a profound effect on the reaction, and we show that energies can be extrapolated easily from one basis set and exchange-correlation functional to another. Using this procedure we calculate a barrier of 69 kJ/mol, in excellent agreement with the experimental value of 75 kJ/mol.  相似文献   

18.
采用杂化密度泛函方法,对MLi2H3(M=Na, K)团簇与NH3的反应机理进行计算分析,对反应中各驻点几何构型进行优化,经频率分析和内禀反应坐标计算以确证各驻点的正确性和连接关系.经单点能校正计算,给出反应相关的能量信息.结果表明:引入Na和K原子后,反应物LOMO轨道有大幅度的向Na、K原子处的转移. KLi2H3有较小的能隙和电离势及较高的费米能,有较高反应活性. Na、K元素的引入,能破坏反应物的稳定性,降低反应能垒.  相似文献   

19.
赵玉娜  高涛  吕金钟  马俊刚 《物理学报》2013,62(14):143101-143101
基于密度泛函理论的第一性原理方法, 系统地研究了Li-N-H储氢过程中各个化合物的晶胞参数、生成焓和化学反应焓. 结果发现优化后的晶格参数与先前的理论和实验研究符合得很好. 通过计算Li3N, LiH, LiNH2和Li2NH在298 K的生成焓分别为-168.7, -81.0, -173.0和-190.8 kJ/mol, 进而计算得到整个储氢反应过程在T=298 K时反应焓为78.5 kJ/mol H2, 这和他人计算得到T=300 K的结果75.67 kJ/mol H2非常接近. 最后, 给出了储氢两步反应过程分别在T=298 K时的反应焓, 这些结果都与实验和他人理论计算得到的数据符合较好. 关键词: 第一性原理 热力学性质 Li-N-H 体系 反应焓  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号