首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis in this paper is concerned with the problem of determining the phase statistics of the output of a multichannel coherent radar interferometer. The 2N channels of the radar consist of the outputs from N pairs of antennae. Each antenna receives a random electromagnetic wave field which has circular normal first-order statistics with an arbitrary coherence function. Each antenna in each pair receives a wave at a different time, the time difference Δt between each antenna in each pair being the same for all pairs. The signals received by each pair are independent. The signals from each pair are combined to give G(t, Δt)=Σk=1N Sk(t) Sk*(t+Δt) where, for example, the signals from each antenna in the kth pair are Sk(t) and Sk(t+Δt).

The probability density function of the modulus and phase of G(t, Δt) is worked out. The joint density is shown to be a type of generalized K distribution, and the phase distribution is shown to be a hypergeometric function. The results show that it is possible to measure the phase of the coherence function of an electromagnetic wave field scattered from a randomly moving extended object (such as the ocean surface) using such a multichannel radar. This phase is related to asymmetry of the Doppler power spectrum. Furthermore, if this asymmetry is a result of surface currents on the ocean interacting with the surface waves which cause the electromagnetic scattering, then the surface currents may be measured in some sense.  相似文献   

2.
李绿洲  蒋继乐  卫荣汉  李俊鹏  田煜  丁建宁 《物理学报》2016,65(1):18103-018103
磁性材料被广泛应用于磁记录和磁润滑等领域,聚甲基丙烯酸甲酯因其良好的介电性,能够用作磁性材料的表面涂层.本文对外磁场作用下,外加载荷和磁场强度对往复滑动的聚甲基丙烯酸甲酯/磁性薄膜双膜系摩擦性能的影响开展了研究.实验结果表明:聚甲基丙烯酸甲酯/磁性双膜体系的摩擦性能随载荷和磁场强度改变而变化;但在干摩擦和硅油润滑两种模式下,磁场对其摩擦学性能的影响规律不同.理论分析了磁场作用下磁场诱发的磁性力与摩擦副物理性质变化对摩擦力和摩擦系数的影响,与实验结果符合良好.研究结果为磁性薄膜的界面介质设计与控制提供了依据.  相似文献   

3.
The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.  相似文献   

4.
We investigate the theory of particles with arbitrary spin and magnetic moment in the Lorentz representation (0, s) (s, 0) in an external constant and uniform electromagnetic field. We obtain the density matrix of free particles in pure spin states. The differential probability of pair producing particles with arbitrary spin by an external constant and uniform electromagnetic field is found using the exact solutions. We calculate the imaginary and real parts of the Lagrangian in an electromagnetic field that takes into account the vacuum polarization.  相似文献   

5.
The theory of the interaction between a complex scalar field and the electromagnetic field is presented with initial and final conditions that allow an interpretation in the context of the relativistic quantum mechanics of a single charged scalar particle. Included are particle scattering, antiparticle scattering, pair creation, and pair annihilation due to a classical dynamical electromagnetic field. The equations of motion are solved by a perturbation expansion, which does not lead to the troublesome divergent terms of quantum field theory.  相似文献   

6.
Distributions of particles in a suspension comprised of magnetic particles (MPs) and nonmagnetic particles (NPs) under gradient magnetic fields are vitally important for the preparation of magnetic-nonmagnetic functionally graded materials (FGMs). In the present study, the effects of magnetic field gradient, magnetic interaction between MPs and concentration of NPs on the distributions of particles in the suspension are investigated using a two-dimensional Monte Carlo simulation. The results show that a gradient distribution of MPs is formed under gradient magnetic fields and increases with increasing the field gradient. However, as the interaction between MPs increases, the distribution gradient decreases, accompanied by the formation of chain-like MP clusters. Moreover, NPs are found to hinder the translation of MPs along the field direction. As the NP concentration increases, the translation of MPs becomes difficult.  相似文献   

7.
Reactions involving spin correlated radical pairs as intermediates are known to be sensitive to applied static and/or oscillating magnetic fields. In the reaction yield detected magnetic resonance (RYDMR) technique, an electromagnetic field in resonance with the electron Zeeman splitting produced by a strong static field is used to perturb the singlet ? triplet interconversion of the radical pair and so to affect the yield of geminate recombination. New experiments are described in which weak radiofrequency fields (? 300μT) in the frequency range 1–80 MHz are applied to radical ion pairs derived from pyrene and 1,3-dicyanobenzene, in the presence of a weak (? 3.0 mT) static magnetic field. Such experiments test the viability of RYDMR in low fields, provide insight into the crossover region between the zero-field and high field cases, and may give information on the distribution of radical pair lifetimes.  相似文献   

8.
We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers.  相似文献   

9.
High intensity colliding laser pulses can create abundant electron-positron pair plasma [A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)], which can scatter the incoming electromagnetic waves. This process can prevent one from reaching the critical field of quantum electrodynamics at which vacuum breakdown and polarization occur. Considering the pairs are seeded by the Schwinger mechanism, it is shown that the effects of radiation friction and the electron-positron avalanche development in vacuum depend on the electromagnetic wave polarization. For circularly polarized colliding pulses, these effects dominate not only the particle motion but also the evolution of the pulses. For linearly polarized pulses, these effects are not as strong. There is an apparent analogy of these cases with circular and linear electron accelerators to the corresponding constraining and reduced roles of synchrotron radiation losses.  相似文献   

10.
MAGIC (MAG-netic Intelligent Compound) is a solidified magnetic ferrofluid (MF) containing both magnetic particles (MPs) and abrasive particles (APs, nonmagnetic) of micron size. The distribution of APs in MAGIC can be controlled by applying a magnetic field during cooling process of MAGIC fluid. In this paper, the influences of magnetic field, size and concentration of particles on the final structures of MPs and the distributions of APs in MAGIC fluid are preliminarily investigated using Stokesian dynamic (SD) simulation method. Simulation results show that MPs prefer to form strip-like structures in MAGIC fluid, the reason for this phenomenon is mainly attributed to the strong dipolar interactions between them. It is also found that MPs prefer to form big agglomerations in weak magnetic field while chains and strip-like structures in strong magnetic field; no long chains or strip-like structures of MPs are observed in low-concentration MAGIC fluid; and for big-size MPs, pure wall-like structures are formed. Evaluation on the distribution of APs with uniformity coefficient shows that strong magnetic field, high concentration and small-size particles can induce more uniform distribution of APs in MAGIC fluid, the uniformity of APs in MAGIC is about 10% higher than that in normal grinding tools.  相似文献   

11.
刘三秋  刘勇  李晓卿 《中国物理 B》2011,20(1):15203-015203
This paper analytically investigates the nonlinear behaviour of transverse plasmons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov--Maxwell equations. It shows that high frequency transverse plasmons are modulationally unstable with respect to the uniform state of the pair plasma. Such an instability would cause wave field collapse into a localized region. During the collapse process, ponderomotive expulsion is greatly enhanced for the increase of wave field strength, leading to the formation of localized density cavitons which are significant for the future experimental research in the interaction between high frequency electromagnetic waves and pair plasmas.  相似文献   

12.
Quantum-electrodynamic processes that take place in the presence of a squeezed electromagnetic field are discussed. Integral formulas are derived that make it possible to express the probability of any process in a squeezed electromagnetic field in terms of the probability of the same process in a classical electromagnetic field. The main laws that govern processes of first order in the fine-structure constant as functions of the number of photons involved and the quantum fluctuations are examined. Tunneling formulas for the probability of a photon producing an electron-positron pair in a strong squeezed field are derived. Also, resonant electron-electron scattering is examined and the scattering cross section as a function of the statistical properties of the field (the way the field has been squeezed) is investigated. It is found that the quantum fluctuations of the squeezed electromagnetic field give rise to an increase in the scattering cross section, with the probability of the process in a phase-squeezed electromagnetic field always being higher than the probability of the process in an amplitude-squeezed electromagnetic field. Zh. éksp. Teor. Fiz. 112, 1543–1556 (November 1997)  相似文献   

13.
Abstract

The analysis in this paper is concerned with the problem of determining the phase statistics of the output of a multichannel coherent radar interferometer. The 2N channels of the radar consist of the outputs from N pairs of antennae. Each antenna receives a random electromagnetic wave field which has circular normal first-order statistics with an arbitrary coherence function. Each antenna in each pair receives a wave at a different time, the time difference Δt between each antenna in each pair being the same for all pairs. The signals received by each pair are independent. The signals from each pair are combined to give G(t, Δt)=Σk=1 N Sk(t) Sk*(t+Δt) where, for example, the signals from each antenna in the kth pair are Sk(t) and Sk(t+Δt).

The probability density function of the modulus and phase of G(t, Δt) is worked out. The joint density is shown to be a type of generalized K distribution, and the phase distribution is shown to be a hypergeometric function. The results show that it is possible to measure the phase of the coherence function of an electromagnetic wave field scattered from a randomly moving extended object (such as the ocean surface) using such a multichannel radar. This phase is related to asymmetry of the Doppler power spectrum. Furthermore, if this asymmetry is a result of surface currents on the ocean interacting with the surface waves which cause the electromagnetic scattering, then the surface currents may be measured in some sense.  相似文献   

14.
The effect of an external bias voltage and spatial variations of the surface potential on the damping of cantilever vibrations in an atomic force microscope (AFM) is considered. The damping is due to an electrostatic friction that arises due to dissipation of the energy of an electromagnetic field generated in the sample by oscillating static charges induced on the surface of the AFM probe tip by the bias voltage or spatial variations of the surface potential. A similar effect appears when the tip is oscillating in an electrostatic field created by charged defects present in the dielectric sample. The electrostatic friction is compared to the van der Waals (vdW) friction between closely spaced bodies, which is caused by a fluctuating electromagnetic field related to the quantum and thermal fluctuations of current density inside the bodies. It is shown that the electrostatic friction and the vdW friction can be strongly enhanced in the presence of dielectric films or two-dimensional (2D) structures—such as a 2D electron system or an incommensurate layer of adsorbed ions exhibiting acoustic oscillations—on the probe tip and sample surfaces. It is also shown that the damping of cantilever oscillations caused by the electrostatic friction in the presence of such 2D structures can have the same order of magnitude and the same dependence on the distance as observed in experiment by Stipe et al. [Phys. Rev. Lett. 87, 096801 (2001)]. At small distances, the vdW friction can be large enough to be measured in experiment. In interpreting the experimental data that obey a quadratic dependence on the bias voltage, one can reject a phonon mechanism according to which the friction depends on the fourth power of the voltage.  相似文献   

15.
The thermal friction force acting on an atom moving relative to a thermal photon bath has recently been calculated on the basis of the fluctuation-dissipation theorem. The thermal fluctuations of the electromagnetic field give rise to a drag force on an atom provided one allows for dissipation of the field energy via spontaneous emission. The drag force exists if the atomic polarizability has a nonvanishing imaginary part. Here, we explore alternative derivations. The damping of the motion of a simple harmonic oscillator is described by radiative reaction theory (result of Einstein and Hopf), taking into account the known stochastic fluctuations of the electromagnetic field. Describing the excitations of the atom as an ensemble of damped harmonic oscillators, we identify the previously found expressions as generalizations of the Einstein-Hopf result. In addition, we present a simple explanation for blackbody friction in terms of a Doppler shift of the thermal radiation in the inertial frame of the moving atom: The atom absorbs blue-shifted photons from the front and radiates off energy in all directions, thereby losing energy. The original plus the two alternative derivations provide for additional confirmation of an intriguing quantum friction effect, and leave no doubt regarding its existence.  相似文献   

16.
By using the expressions for the solutions of the Einstein-Maxwell equations in terms of potentials, valid in the case where the spacetime admits a shear-free geodesic null congruence and the electromagnetic field is aligned to it, we show that a pair of complex potentials generates simultaneous perturbations of the gravitational and the electromagnetic fields. We also show that if the background electromagnetic field is null, then the pair of complex potentials is determined by a pair of coupled, linear, second-order differential equations.  相似文献   

17.
The matrix 8-component Dirac-like form of the P-odd equations for boson fields of spin 1 and 0 are obtained and the symmetry group of the equations is derived. We found exact solutions of the field equation for vector particles with arbitrary electric and magnetic moments in external constant and uniform electromagnetic fields. The differential probability of pair production of vector particles with electric dipole moments and anomalous magnetic moments by an external constant and uniform electromagnetic field has been found using exact solutions. We have calculated the imaginary and real parts of the electromagnetic field Lagrangian that takes into account the vacuum polarization of vector particles. Received: 14 April 2001 / Revised version: 13 July 2001 / Published online: 19 September 2001  相似文献   

18.
A two-body system with scalar constituents of finite masses is described by a pair of coupled Klein-Gordon equations. The modification required for preserving compatibility in the presence of an external field is nontrivial but can be exactly carried out beyond the static case when the external potential admits a suitable invariance. The conditions ensuring this property are exhibited assuming that the external field is either electromagnetic or a pure spin-two tensor (like a weak gravitational field). Special attention is devoted to plane waves. A suitable superposition of linearly polarized waves permits to apply this method when the field is electromagnetic. Another example is given by an external spin-two field obeying the propagation equation with a mass term.  相似文献   

19.
In this paper, cell deformation induced by low-intensity electromagnetic pulses (EMPs) is presented. A broad-band transverse electromagnetic wave cell (BTEM cell) was used in the experimental system to simulate the free space transmission condition. The biological samples were exposed to the EMP field in the BTEM cell. After the chick's erythrocytes were exposed to EMP field, pores on their membranes were observed by a scanning electron microscope. Cell fusion was also found between the chick's erythrocytes as well as between the rabbit's. In other experiments, it is found that the EMP field can increase the cytotoxicity of some anticancer drugs. The results suggest that the membrane deformation is a secondary effect of electromagnetic fields  相似文献   

20.
Recent studies on a variety of metal phosphates (MP) have revealed that MPs tend to be soft at ambient pressure if the coordination on the metal cation is low and the degree of hydration or hydrogenation is high, while they are stiff otherwise. In addition, the softer MPs were found to stiffen dramatically more quickly with increasing pressure than the stiffer MPs. Here we review these findings and support their relevance with new results on the mechanical properties of tribofilms aged in air of relative humidity, which were produced from commercial, zinc phosphate-containing lubricant packages via heating and rubbing. We find that the films can soften quite substantially after having been exposed to humidity, as to be expected from the studies of bulk MPs. Moreover, when the hydrated films are exposed to high loads, the force-distance withdrawal curve becomes identical to that of unaged, non-hydrated films. A straightforward explanation of this observation is that large pressure reverses the hydration of the tribofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号