首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thickness dependent pair breaking parameter, inherent in the Maki-Thompson contribution to the excess conductivity due to superconducting fluctuations, is found to be equal to the observed shift of Tc relative to the bulk value. Measurements were performed on thin amorphous Be0.7Al0.3 films produced by vapour quenching.  相似文献   

2.
Using the time dependent Ginzburg-Landau theory the influence of a finite and even strong magnetic field on the fluctuations in superconductors aboveT c is studied. We calculate the dynamical conductivity, the Hall angle, and the static magnetisation from the fluctuations of the charge current associated with the fluctuations of the order parameter. It is found that the magnetic field generally enhances the singular contributions of the fluctuations to the conductivity and the susceptibility. Associated with this enhancement is a reduction of the characteristic frequency scale close toT c .  相似文献   

3.
We reinvestigate the mode coupling approach to the central peak which occurs in the vicinity of a structural phase transition at T c. For a scalar ? 4-model it is shown that the use of renormalized vertices leads to quite different results compared to recent calculations with bare vertices. Particularly, we prove that the latter are obtained in leading order of the anharmonicity constant of the on-site potential from a perturbational treatment of the renormalized vertices. Again, this mode coupling approach may yield a dynamical transition at a temperature T c'(≥ T c) at which the dynamics becomes nonergodic, i.e. a central peak occurs. For a ? 4- model with infinite range interactions our theoretical predictions are consistent with numerical results. Furthermore, if the fluctuations in the vicinity of Tc are Gaussian, no dynamical transition occurs above Tc. Therefore the temperature T 0'obtained from the Ginzburg criterion sets an upper bound for T c'. If a dynamical transition occurs, it is shown that the nonergodicity parameter as function of wave vector q and temperature T follows from an universal master function.  相似文献   

4.
The mechanism of effective attraction of electrons in a thin metal film due to interaction with oscillations of adsorbed atoms is considered. At a sufficiently narrow resonance electron level close to the Fermi level this interaction has a resonance character and, therefore, makes a great contribution to the effective attraction constant. The temperature of the superconducting transition Tc with due regard to this mechanism has been calculated and shown to lead to a considerable increase of Tc.  相似文献   

5.
The electronic spectrum of a doped semiconductor described by the Anderson-Holstein impurity model and its conductivity derived from the Kubo linear response theory are calculated. Two characteristic temperatures depending on the doping level x are found in the phase diagram, T PG and T λ(x). The pseudogap that opens in the single-particle spectrum at low doping levels and temperatures closes at the lower one, T PG. The pseudogap state of an insulator is attributed to spin fluctuations in a doped compound. At the higher characteristic temperature T λ(x),, spin fluctuations vanish and the doped compound becomes a paramagnetic poor metal. Two distinct metal-insulator crossovers between semiconductor-like and metallic temperature dependence of resistivity are found. An insulator-to-poor-metal transition occurs at T *(x) ≈ T λ(x). A poor-metal-to-insulator transition at a lower temperature is attributed to the temperature dependence of density of states in the pseudogap. It is shown that both transitions are observed in La2?x SrxCUO4.  相似文献   

6.
The amplitude of scattering of f electrons has been calculated for the periodic Anderson model in the strong-correlation limit (U = ∞) in the Cooper channel. From the condition of the existence of a pole of this amplitude, an equation is derived for determining the critical temperature (T c) of the transition to the superconducting phase with the s symmetry of the order parameter. The temperature T c as a function of the electron density and hybridization parameter has been calculated by self-consistently solving the system of equations. The region of the existence of the superconducting phase is found to adjoin the region of the existence of the unsaturated ferromagnetic state and does not overlap it. The results can be used to describe the transition to the superconducting phase with the s symmetry of the order parameter in heavy-fermion skutterudite LaFe4P12. In this case, the inclusion of the scattering of fermions by spin fluctuations turns out to be substantial enough to obtain T c values close to the experimental data.  相似文献   

7.
Investigations of the pressure dependence of the superconducting transition temperature Tc up to 17 kbar, and of the normal conductivity up to 50 kbar are reported. It is observed that below 8 kbar, the value of Tc increases linearly with the pressure. In addition, there is a significant drop of Tc at about 9 kbar which may be due to a phase transition.  相似文献   

8.
The temperature dependence of the Electric Field Gradient (EFG) in PbHfO3 was studied in the temperature range 25–225°C by the Differential Perturbed Angular Correlation method. In the two anti-ferroelectric phases below 215°C, not too close to either transition temperature, the EFG decreases as the temperature increases toward Tc. Just above Tc an abrupt rise of EFG was observed indicating a critically behaving contribution to EFG. The results are interpreted in terms of a model based on the local static as well as time-dependent changes of the electric environment, at a lattice site. In accord with the predictions of this model the results exhibit qualitatively the P2s temperature dependence of EFG far from Tc, where Ps is the sub-lattice polarization, while in close proximity to Tc the dominant contribution to EFG is due to the susceptibility Xq connected with the soft-mode fluctuations. The derived critical exponents are in agreement with previous experimental results on related compounds and with theoretical predictions. A hitherto unobserved additional component of Vzz was established, behaving critically at the antiferro-paraelectric transition at 215°C. This new component is interpreted to originate in local fluctuations connected with the central mode.  相似文献   

9.
The temperature dependence of the conduction electron spin-flip lifetime in CuCr Kondo alloys can be determined from Tc measurements in CuCr/Pb proximity sandwiches. When the thin film sandwich is in the Cooper limit, a great sensitivity of the magnetic depairing effect upon Tc is observed. The temperature dependence of the calculated pair breaking parameter deviates markedly from the theoretical predictions.  相似文献   

10.
The superconducting transition and the critical fluctuations of a model system that can pass continuously from one-dimension to three-dimensions are investigated. The transition is brought about by a variable coupling between families of linear chains. First, a Bose lattice-gas is considered, and the Bose-Einstein transition temperature TBE is calculated as a function of the coupling strength. Second, the temperature Toz at which the fluctuations in the gap parameter equal the average gap parameter is calculated as a function of the coupling, and is found to behave in a similar way to TBE. Both these temperatures go continuously to zero as the system becomes one-dimensional while Tc calculated in mean-field theory does not vanish in this limit.It is found that for coupling parameters believed to be characteristic of some superconductors possessing the A-15 crystal structure, such as Nb3Sn, the system is essentially three-dimensional (3D) as far as superconducting properties are concerned; but critical fluctuations may be somewhat enhanced, in particular when the electronic density of states is not very large.  相似文献   

11.
It is found from the temperature dependence of the ionic conductivity of amorphous Li2B2O4 that the ion transport process is rather complicated. At temperature below Tk (≈310°C), the ionic conductivity obeys an Arrhenius relation. Above the crystallization temperature Tc (≈410°C) ion transport is dominated by the process in the crystalline state. In between the ionic conductivity is anomalously enhanced. In this pre-crystallization range two distinguishable steps with a transition temperature at Tp (≈380°C) can be identified. At temperature between Tk and Tp, the conductivity increase is due to the redistribution of free volume. For temperature between Tp and Tc the specimen contains a small amount of crystallites but the crystallinity is less than 5%. The 7Li NMR spectra show that the line shape of partially crystallized amorphous material is quite similar to that of LiCl containing DSPP but in this case the second-phase particles are crystallites of the parent material.  相似文献   

12.
Features of a phase transition between 0 and π states in superconductor/ferromagnet/superconductor (SFS) Josephson structures with thin superconducting layers and a ferromagnetic barrier are studied experimentally and theoretically. The dependence of the critical temperature Tc of a transition of the hybrid structure to a superconducting state on the thickness of superconducting layers ds is analyzed by a local method involving measurements of the nonlinear microwave response of the system by a near-field probe. An anomalous increase in the measured temperature Tc at the reduction of the thickness ds is detected and is attributed to the 0-π transition.  相似文献   

13.
14.
We report on low temperature transport measurements on nano-granular Nb thin films deposited on Si (1 0 0) substrates using DC magnetron sputtering. The superconducting transition temperature (Tc) is found to decrease monotonically with the increase of the lattice parameter (a) irrespective of its thickness and grain size. The superconducting transition temperature is found to depend only on the lattice parameter whereas the normal state resistivity depends both on lattice parameter and the details of the sample morphology. We have modeled this Tc variation with lattice expansion in terms of Debye temperature reduction using Morse potential as the interatomic potential in Nb.  相似文献   

15.
The rounding of the transition curve is measured for superconducting bismuth films in a perpendicular magnetic field. The contribution of the fluctuating superconducting wave function to the conductivity aboveT c in an applied magnetic field is calculated with a simple model. The allowed states of the fluctuations are cylinders in momentum space. During their life time the fluctuating superconducting electrons can be accelerated by an electrical field and contribute to the conductivity. Experiment and theory are in fair agreement. We obtain some information about the Pauli spin paramagnetism of the electrons.  相似文献   

16.
The nature of the pseudogap state and its relation to the d-wave superconductivity in high-T c superconductors is still an open issue. The vortex-like excitations detected by the Nernst effect measurements exist in a certain temperature range above superconducting transition temperature T c, which strongly support that the pseudogap phase is characterized by finite pairing amplitude with strong phase fluctuations and imply that the phase transition at T c is driven by the loss of long-range phase coherence. We first briefly introduce the electronic phase diagram and pseudogap state of high-T c superconductors, and then review the results of Nernst effect for different high-T c superconductors. Related theoretical models are also discussed.  相似文献   

17.
The features of the superconducting state are studied in the simple exactly solvable model of the pseudogap state induced by fluctuations of the short-range “dielectric” order in the model of the Fermi surface with “hot” spots. The analysis is carried out for arbitrary short-range correlation lengths ξcorr. It is shown that the superconducting gap averaged over such fluctuations differs from zero in a wide temperature range above the temperature T c of the uniform superconducting transition in the entire sample, which is a consequence of non-self-averaging of the superconducting order parameter over the random fluctuation field. In the temperature range T>T c, superconductivity apparently exists in individual regions (drops). These effects become weaker with decreasing correlation length ξcorr; in particular, the range of existence for drops becomes narrower and vanishes as ξcorr → 0, but for finite values of ξcorr, complete self-averaging does not take place.  相似文献   

18.
We study the normal (nonsuperconducting) phase of the attractive Hubbard model within the dynamical mean field theory (DMFT) using the numerical renormalization group (NRG) as an impurity solver. A wide range of attractive potentials U is considered, from the weak-coupling limit, where superconducting instability is well described by the BCS approximation, to the strong-coupling region, where the superconducting transition is described by Bose condensation of compact Cooper pairs, which are formed at temperatures much exceeding the superconducting transition temperature. We calculate the density of states, the spectral density, and the optical conductivity in the normal phase for this wide range of U, including the disorder effects. We also present the results on superconducting instability of the normal state dependence on the attraction strength U and the degree of disorder. The disorder influence on the critical temperature T c is rather weak, suggesting in fact the validity of Anderson’s theorem, with the account of the general widening of the conduction band due to disorder.  相似文献   

19.
The temperature dependence of the parameters of the hyperfine interaction in the surface layers and in the bulk of macroscopic crystals of hexagonal ferrites of the type Sr-M (SrFe12O19) is investigated by the method of simultaneous gamma-, x-ray, and electron Mössbauer spectroscopy. It is shown experimentally that the transition of an ≈ 200 nm thick surface layer of macroscopic ferromagnets to the paramagnetic state occurs at a temperature 3° below the Curie point (T c) for the bulk of the crystal. It was established that the transition temperatureT c(L) of a thin layer localized at a depthL from the surface of the crystal increases away from the surface and reaches the valueT c at the lower (away from the surface) boundary of the so-called “critical” surface layer. A nonuniform state in which the bulk region of the crystal is magnetically ordered while the surface region is disordered is observed nearT N.  相似文献   

20.
The influence of spin fluctuations on the thermodynamic properties of a helical ferromagnet MnSi has been investigated in the framework of the Hubbard model with the electronic spectrum determined from the first-principles LDA + U + SO calculation, which is extended taking into account the Hund coupling and the Dzyaloshinskii–Moriya antisymmetric exchange. It has been shown that the ground state of the magnetic material is characterized by large zero-point fluctuations, which disappear at the temperature T* (<T c is the temperature of the magnetic phase transition). In this case, the entropy abruptly increases, and a lambdashaped anomaly appears in the temperature dependence of the heat capacity at constant volume (C V (T)). In the temperature range T* < T < T c , thermal fluctuations lead to the disappearance of the inhomogeneous magnetization. The competition between the increase in the entropy due to paramagnon excitations and its decrease as a result of the reduction in the amplitude of local magnetic moments, under the conditions of strong Hund exchange, is responsible for in the appearance of a “shoulder” in the dependence C V (T)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号