首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe_2O_4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe_2O_4 as the potential candidate for renewable energy applications.  相似文献   

2.
查欣雨  高琳洁  白洪昌  王江龙  王淑芳 《中国物理 B》2017,26(10):107202-107202
The thermoelectric performance of CdO ceramics was enhanced by simultaneously optimizing the electrical and thermal transport properties via a small amount of Zn doping(≤3%). The introduction of Zn can obviously increase the electrical conductivity of CdO due to the simultaneous increase of carrier concentration and mobility, and eventually results in an improvement in power factor. Zn doping is also effective in suppressing the thermal conductivity of CdO because of stronger phonon scatterings from point defects, Zn-riched second phase, and grain boundaries. A best ZT of about 0.45 has been achieved in the Cd_(1-x)Zn_xO systems at about 1000 K, which is comparable to the highest values reported for other n-type oxide TE materials.  相似文献   

3.
Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe_2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe_2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10~(-4)W/m·K~2to 8.08×10~(-4)W/m·K~2at 612~?C.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10~(-4)W/m·K~2at 537~?C.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe_2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612~?C is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure.  相似文献   

4.
We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ultrafine particles, which can be achieved by the enhanucement of locai field around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material.  相似文献   

5.
Charge carriers in organic semiconductor are different from that of traditional inorganic semiconductor. Based on three-current model, considering electrical field effect, we present a theoretical model to discuss spin-polarized injection from ferromagnetic electrode into organic semiconductor by analyzing electrochemical potential both in ferromagnetic electrode and organic semiconductors. The calculated result of this model shows effects of electrode's spin polarization, equilibrium value of polarons ratio, interracial conductance, bulk conductivity of materials and electrical field. It is found that we could get decent spin polarization with common ferromagnetic electrode by increasing equilibrium value of polarons ratio. We also find that large and matched bulk conductivity of organic semiconductor and electrode, small spin-dependent interracial conductance, and enough large electrical field are critical factors for increasing spin polarization.  相似文献   

6.
The effect of a transverse magnetic field on the oscillatory thermocapillary convection in the NaBi(WO4)2 melt was studied by using the in-situ observation system. The oscillation was attenuated when the 60 mT magnetic field was applied, as shown by the decrease in the amplitude and the frequency. Furthermore, the oscillation under smaller temperature difference was stabilized after the magnetic field was applied. The magnetic effect could be due to the Lorentz force generated by the interaction between motional ions and the vertical magnetic field. The ionic conductivities were measured to demonstrate the effect of the magnetic field. The solid ionic electrical conductivity increases with the temperature rise, and the melt ionic electrical conductivity was measured to be about 2.0×10-4 Ω-1·cm-1. Experimental results manifest that the effect of the magnetic field on anions and cations in the melt makes the flow change to the direction normal to the applied field, so the flow is more orderly and the oscillation is suppressed.  相似文献   

7.
The applicability and limitation of some fracture criteria in the fracture mechanics of magnets are studied. It is shown that the magnetic field intensity factor can be used as a fracture criterion when the crack in a magnet is only affected by a magnetic field. For some magnetostrictive materials in which the components of magnetostriction strain do not satisfy the compatibility equation of deformation, the stress intensity factor can no longer be effectively applicable as a fracture criterion when the crack in a magnet is affected by a magnetic field and mechanical loads simultaneously.  相似文献   

8.
Interactions of two collinear and parallel a/b-plane cracks in REBCO(where RE is a rare-earth element and usually Y is adopted) bulk superconductors under the Lorentz force resulted from the applied magnetic field are studied.By using the derived boundary integral equation for the crack problem of a cylindrical bulk superconductor under the applied magnetic field,we comprehensively investigate the stress intensity factor(SIF) of modes Ⅰ and Ⅱ at the crack tips of the two collinear and parallel cracks with their sizes,relative positions and the applied magnetic field.The calculated results show that in most cases,the SIF of mode I is found to be about tens of times of the one of mode Ⅱ,and all the SIFs are always proportional to increase in the applied magnetic field,and the cracks near the center are more dangerous due to the larger Lorentz force.  相似文献   

9.
We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca3 Co Nb2O9, in which the effective spin of Co2+is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant θCW ~-55 K and the low Neel temperature TN~ 1.45 K give a frustration factor f =| θCW/TN|≈ 38, suggesting that Ca3 Co Nb2O9resides in strong frustration regime. Slightly below TN, deviation between the susceptibility data under zero-field cooling(ZFC)and field cooling(FC) is observed. A new magnetic state with 1/3 of the saturate magnetization Ms is suggested in the magnetization curve at 0.46 K. Our study indicates that Ca3 Co Nb2O9is an interesting material to investigate magnetism in triangular lattice antiferromagnets with weak anisotropy.  相似文献   

10.
Magnetic droplets,a class of highly nonlinear magnetodynamic solitons,can be nucleated and stabilized in nanocontact spintorque nano-oscillators.Here we experimentally demonstrate magnetic droplets in magnetic tunnel junctions(MTJs).The droplet nucleation is accompanied by power enhancement compared with its ferromagnetic resonance modes.The nucleation and stabilization of droplets are ascribed to the double-Co Fe B free-layer structure in the all-perpendicular MTJ,which provides a low Zhang-Li torque and a high pinning field.Our results enable better electrical sensitivity in fundamental studies of droplets and show that the droplets can be utilized in MTJ-based applications and materials science.  相似文献   

11.
Nanostructured and nanocomposite thermoelec- tric materials have recently attracted a great deal of attention due to the optimization of thermal and electrical transports for high thermoelectric performance The initial ideas for the applica- tions of nano-structures in thermoelectric materials are that the lattice thermal conductivity can be de- pressed by the scattering of nano-particles or nano- boundaries as well as the enhanced electron density of states at the Fermi level. The latter is expected to enhance Seebeck coefficients due to the fact that the low energy carriers can be filtered by nano-sized grain boundaries. Lowered thermal conductivity and enhanced thermoelectric figure of merit have been ob- served in lots of bulk materials with nanostructures or nano-impurities. However, the thermal and electrical transports in these nano-materials are usually mea- sured by normal commercial systems, in which only the statistical values of the transports are obtained. The characterization of local thermoelectric parame- ters still remains a challenging task at the submicro, even nanometer level as a powerful tool for Scanning probe microscopy nanostructure imaging and local properties characterization, has become a promis- ing technique for measuring local thermal and electri- cal properties, like scanning tunneling microscopy, scanning thermal microscopy, and scanning Joule expansion microscopy. Recent work has demon- strated simultaneously determined the thermal con- ductivity and Seebeek coefficient of Bi2Se3 thin film by a microprobe technique.  相似文献   

12.
We investigate the variations from as-deposited Zn1-x: Cox O magnetic semiconductors to the post-annealed Co- ZnCoO granular composite. The as-deposited Zn1-x Cox 0 magnetic semiconductor deposited under thermal nonequilibrium conditions is composed of Zn1-x. Cox O nanograins of high Co concentration. The room-temperature ferromagnetism with high magnetization and large negative magnetoresistance are found in the as-deposited samples. By annealing, the samples become of granular composite consisting of the Co metal grains and the remanent Zn1-x CoxO matrix. Although the magnetization is enhanced after annealing, the spin-dependent negative magnetoresistance disappears at room temperature. The magnetoresistance observed in the annealed samples in the high field region has no relation with the ferromagnetism, which in turn indicates that the roomtemperature ferromagnetism and large negative magnetoresistance observed in the as-deposited are the intrinsic properties of the Zn1-x Cox O magnetic semiconductor.  相似文献   

13.
By solving the Boltzmann transport equation and considering the spin-dependent grain boundary scattering, the distribution of electrons in grains and the electrical transport properties in the applied magnetic field are studied. With regard to the dominant influence of grain boundary scattering which is taken as a boundary condition for the electrical transport, the grain size-dependent electrical conductivity is investigated. In addition, the reorientation of the relative magnetization between grains brings the change of the electron spin when the magnetonanocrystailine material is subjected to the magnetic field, resulting in the remarkable giant magnetoresistance effect.  相似文献   

14.
The magnetic, electrical and thermal transport properties of the perovskite La0.7Ca0.3Mn0.9 Cr0.1O3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300 K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the ““double-bump““ feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T)are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La0.7Ca0.3Mn0.9Cr0.1O3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system.  相似文献   

15.
The microstructural modification of existing materials for magnetic cooling applications, and mass fabrication of the modified materials are reviewed, emphasizing the maximization of magnetic entropy change and minimization of hysteresis losses, as well as the engineering problems in the actual application of promising materials. In the first part, physical rules are put forward to explore high performance magnetic refrigerants, including the enhancement of adiabatic temperature change in finite field, multi-caloric effects, and multi-layered structure. Special attention is given to non-magnetic proper- ties. Following this, an overview of mass fabrication of magnetic refrigerants having large entropy change, small hysteresis, good mechanical properties, and high thermal conductivity is presented.  相似文献   

16.
This work reports the effects of magnetic field on an electrically conducting fluid with low electrical conductivity flowing in a smooth expanded channel. The governing nonlinear magnetohydrodynamic (MHD) equations in induction- free situations are derived in the framework of MHD approximations and solved numerically using the finite-difference technique. The critical values of Reynolds number (based on upstream mean velocity and channel height) for symmetry breaking bifurcation for a sudden expansion channel (1:4) is about 36, whereas the value in the case of the smooth expansion geometry used in this work is obtained as 298, approximately (non-magnetic case). The flow of an electrically conducting fluid in the presence of an externally applied constant magnetic field perpendicular to the plane of the flow is reduced significantly depending on the magnetic parameter (M). It is expansion (1:4) is about 475 for the magnetic parameter M found that the critical value of Reynolds number for smooth = 2. The separating regions developed behind the smooth symmetric expansion are decreased in length for increasing values of the magnetic parameter. The bifurcation diagram is shown for a symmetric smoothly expanding channel. It is noted that the critical values of Reynolds number increase with increasing magnetic field strength.  相似文献   

17.
Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fel-xCox)11.9Si1.1 (x=0.04, 0.06, and 0.08) with Curie temperatures of 243 K, 274 K, and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below Tc, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above Tc. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above Tc, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state.  相似文献   

18.
《中国物理快报》2005,22(12):3169-3172
The magnetic properties and the structure of [Co/Ti/Gd0.36 Co0.64/Ti]4/Co multilayers are investigated by means of torque magnetometer, vibrating sample magnetometer and transverse magneto-optic Kerr effect (TMOKE) measurements and the atomic force microscopy. Due to interlayer exchange interaction, Co and Gd-Co layers form a macroscopic ferrimagnetic system. The change in the sign of the TMOKE hysteresis loops near the compensation temperature and field induced magnetic phase transitions are found. The latter can be characterized by a critical field which shows a linear variation with the temperature. The magnetic properties of these multilayers from many points of view are similar to those of bulk ferrimagnets.  相似文献   

19.
A series of SrIn2 O4 :Eu3+ phosphors are synthesized by a high temperature solid-state method, and their luminescent properties are investigated. They can be excited by 395-nm radiation, and produce red emission (619 nm); however, they have a low absorption of near-ultraviolet light with the wavelength of 400nm-405 nm. When co-doped with A+ (A=Li, Na, K), the emission intensity of SrIn2O4 :Eu3+ is significantly enhanced, but its emission and excitation spectral profile is unchanged. With co-doping Sm3+ , not only is the emission intensity of SrIn2 O4 :Eu3+ enhanced, but also the absorption is broadened and strengthened in the range of 400 nm-405nm. The effect of Sm3+ -doped content on the emission intensity of SrIn2O4 :Eu3+ , Sm3+ is investigated, and the optimal Sm3+ content is 0.02 mol.  相似文献   

20.
The sputtering parameter mediated composition (SPMC) effect of 3.0-μm-thick SmCo-based films is experimentally and theoretically studied. The experimental results give a clear indication that the Sm concentration increases with the decreasing sputtering power or with the increasing Ar gas pressure, which are in agreement with the calculated values when the preferential sputtering effect is disregarded. The SPMC effect provides an opportunity for the same composite target to fabricate films with an Sm concentration varying from 13.8at.% to 17.3at.%, which is reasonable for the magnetic phase transformation (Sm2Co17→SmCo7→SmCo5) and the enhanced coercivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号