首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstruction in a limited acquisition time is a high priority. It has been shown for the case of 3D EPRI, that a uniform distribution of the projection data generally enhances reconstruction quality. In this work, we have suggested two data acquisition techniques for which the gradient orientations are more evenly distributed over the 4D acquisition space as compared to the existing methods. The first sampling technique is based on equal solid angle partitioning of 4D space, while the second technique is based on Fekete points estimation in 4D to generate a more uniform distribution of data. After acquisition, filtered backprojection (FBP) is applied to carry out the reconstruction in a single stage. The single-stage reconstruction improves the spatial resolution by eliminating the necessity of data interpolation in multi-stage reconstructions. For the proposed data distributions, the simulations and experimental results indicate a higher fidelity to the true object configuration. Using the uniform distribution, we expect about 50% reduction in the acquisition time over the traditional method of equal linear angle acquisition.  相似文献   

2.
3.
Continuous wave electron paramagnetic resonance imaging (EPRI) of living biological systems requires rapid acquisition and visualization of free radical images. In the commonly used multiple-stage back-projection image reconstruction algorithm, the EPR image cannot be reconstructed until a complete set of projections is collected. If the data acquisition is incomplete, the previously acquired incomplete data set is no longer useful. In this work, a 3-dimensional progressive EPRI technique was implemented based on inverse Radon transform in which a 3-dimensional EPR image is acquired and reconstructed gradually from low resolution to high resolution. An adaptive data acquisition strategy is proposed to determine the significance of projections and acquire them in an order from the most significant to the least significant. The image acquisition can be terminated at any time if further collection of projections does not improve the image resolution distinctly, providing flexibility to trade image quality with imaging time. The progressive imaging technique was validated using computer simulations as well as imaging experiments. The adaptive acquisition uses 50-70% less projections as compared to the regular acquisition. In conclusion, adaptive data acquisition with progressive image reconstruction should be very useful for the accelerated acquisition and visualization of free radical distribution.  相似文献   

4.
Electron paramagnetic resonance imaging (EPRI) provides direct detection and mapping of free radicals. The continuous wave (CW) EPRI technique, in particular, has been widely used in a variety of applications in the fields of biology and medicine due to its high sensitivity and applicability to a wide range of free radicals and paramagnetic species. However, the technique requires long image acquisition periods, and this limits its use for many in vivo applications where relatively rapid changes occur in the magnitude and distribution of spins. Therefore, there has been a great need to develop fast EPRI techniques. We report the development of a fast 3D CW EPRI technique using spiral magnetic field gradient. By spiraling the magnetic field gradient and stepping the main magnetic field, this approach acquires a 3D image in one sweep of the main magnetic field, enabling significant reduction of the imaging time. A direct one-stage 3D image reconstruction algorithm, modified for reconstruction of the EPR images from the projections acquired with the spiral magnetic field gradient, was used. We demonstrated using a home-built L-band EPR system that the spiral magnetic field gradient technique enabled a 4-7-fold accelerated acquisition of projections. This technique has great potential for in vivo studies of free radicals and their metabolism.  相似文献   

5.
Electron paramagnetic resonance imaging (EPRI) is a technique that has been used for in vivo oxygen imaging of small animals. In continuous wave (CW) EPRI, the measurement can be interpreted as a sampled 4D Radon transform of the image function. The conventional filtered-backprojection (FBP) algorithm has been used widely for reconstructing images from full knowledge of the Radon transform acquired in CW EPRI. In practical applications of CW EPRI, one often is interested in information only in a region of interest (ROI) within the imaged subject. It is desirable to accurately reconstruct an ROI image only from partial knowledge of the Radon transform because acquisition of the partial data set can lead to considerable reduction of imaging time. The conventional FBP algorithm cannot, however, reconstruct accurate ROI images from partial knowledge of the Radon transform of even dimension. In this work, we describe two new algorithms, which are referred to as the backprojection filtration (BPF) and minimum-data filtered-backprojection (MDFBP) algorithms, for accurate ROI-image reconstruction from a partial Radon transform (or, truncated Radon transform) in CW EPRI. We have also performed numerical studies in the context of ROI-image reconstruction of a synthetic 2D image with density similar to that found in a small animal EPRI. This demonstrates both the inadequacy of the conventional FBP algorithm and the success of BPF and MDFBP algorithms in ROI reconstruction. The proposed ROI imaging approach promises a means to substantially reduce image acquisition time in CW EPRI.  相似文献   

6.
Electron paramagnetic resonance imaging (EPRI) technology has rapidly progressed in the last decade enabling many important applications in the fields of biology and medicine. At frequencies of 300-1200 MHz a range of in vivo applications have been performed. However, the requisite imaging time duration to acquire a given number of projections, limits the use of this technique in many in vivo applications where relatively rapid kinetics occur. Therefore, there has been a great need to develop approaches to accelerate EPRI data acquisition. We report the development of a fast low-frequency EPRI technique using spinning magnetic field gradients (SMFG). Utilizing a 300 MHz CW (continuous wave) EPRI system, SMFG enabled over 10-fold accelerated acquisition of image projections. 2D images with over 200 projections could be acquired in less than 3s and with 20s acquisitions good image quality was obtained on large aqueous free radical samples. This technique should be particularly useful for in vivo studies of free radicals and their metabolism.  相似文献   

7.
Electron tomography is a well‐known technique providing a 3D characterization of the morphology and chemical composition of nanoparticles. However, several reasons hamper the acquisition of tilt series with a large number of projection images, which deteriorate the quality of the 3D reconstruction. Here, an inpainting method that is based on sinogram interpolation is proposed, which enables one to reduce artifacts in the reconstruction related to a limited tilt series of projection images. The advantages of the approach will be demonstrated for the 3D characterization of nanoparticles using phantoms and several case studies.  相似文献   

8.
The broad spectrum of spin probes used for electron paramagnetic resonance imaging (EPRI) result in poor spatial resolution of the reconstructed images. Conventional deconvolution procedures can enhance the resolution to some extent but obtaining high resolution EPR images is still a challenge. In this work, we have implemented and analyzed the performance of a postacquisition deblurring technique to enhance the spatial resolution of the EPR images. The technique consists of two steps; noniterative deconvolution followed by iterative deconvolution of the acquired projections which are then projected back using filtered backprojection (FBP) to reconstruct a high resolution image. Further, we have proposed an analogous technique for iterative reconstruction algorithms such as multiplicative simultaneous iterative reconstruction technique (MSIRT) which can be a method of choice for many applications. The performance of the suggested deblurring approach is evaluated using computer simulations and EPRI experiments. Results suggest that the proposed procedure is superior to the standard FBP and standard iterative reconstruction algorithms in terms of mean-square-error (MSE), spatial resolution, and visual judgment. Although the procedure is described for 2D imaging, it can be readily extended to 3D imaging.  相似文献   

9.
A novel procedure for reconstruction of 2D separated-local-field (SLF) NMR spectra from projections of 1D NMR data is presented. The technique, dubbed SLF projection reconstruction from one-dimensional spectra (SLF-PRODI), is particularly useful for uniaxially oriented membrane protein samples and represents a fast and robust alternative to the popular PISEMA experiment which correlates (1)H-(15)N dipole-dipole couplings with (15)N chemical shifts. The different 1D projections in the SLF-PRODI experiment are obtained from 1D spectra recorded under influence of homonuclear decoupling sequences with different scaling factors for the heteronuclear dipolar couplings. We demonstrate experimentally and numerically that as few as 2-4 1D projections will normally be sufficient to reconstruct a 2D SLF-PRODI spectrum with a quality resembling typical PISEMA spectra, leading to significant reduction of the acquisition time.  相似文献   

10.
Mojette变换是一种最小冗余采样的离散Radon变换,能够用较少角度的投影数据进行精确的计算层析(computed tomography,CT)重建,为少量投影角度CT技术的实现提供了一种新思路.投影角度的空间布局决定了层析重建最少所需投影的数量.为了获得Mojette变换层析技术中的最优投影空间角度布局方案,本文对三维Mojette变换数学模型及其精确重建条件进行了研究.以此为基础,在考虑实际探测器像素数目受限的条件下,提出了确定最优投影角度的方法.研究结果表明:所有探测器围绕被测物体在同一水平面内进行平行投影采集是最优的投影角度布局方案,此时投影模型为二维Mojette变换,所需的投影角度和探测器像素数最少,投影角度范围最小;若在实际的测量中该投影条件无法满足,则投影矢量中|pi|和|qi|的值越小越好.该研究可为实际层析系统的建立提供理论基础.  相似文献   

11.
PurposeElectron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed.MethodsWe present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration.ResultsIn both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6 mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images.ConclusionsEPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our understanding cycling hypoxia. Moreover this technique can be easily extended to various MRI applications.  相似文献   

12.
Three-dimensional cine imaging provides a wealth of information about cardiac anatomy and function, but its use in the clinical environment is limited because data acquisition is very time consuming. In this work, a free-breathing 3D whole-heart cine imaging framework was developed using a time-efficient stack of spirals trajectory and accelerated reconstruction. Two suitable view ordering methods are considered with different spacing between k-space readouts in the partition dimension: uniform and tiny golden ratio based. A simulation study suggested the latter did not present any benefits in terms of similarity to the true image. The proposed method was subsequently tested on 10 prospective subjects and compared with conventional multi-slice breath-hold imaging. Image quality was evaluated using objective and subjective scores and ventricular measurements were compared to assess clinical accuracy. Image quality was lower in the proposed technique than in breath-hold images but good agreement was found in clinically relevant ventricular measurements. In addition, the proposed method was fast to acquire, required minimal planning and provided full anatomical coverage with isotropic resolution.  相似文献   

13.
PurposeTo present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI.Material and methods3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4–5 min and 4D whole-heart volumes (3D + cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction.ResultsFor data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P > 0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition.ConclusionThe proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5 min free breathing acquisition.  相似文献   

14.
The recent advances in image-processing techniques have led to the development of many methods to reduce the scan time without degrading the image quality. In particular, tomography has improved image reconstruction methods with the concomitant improvement of high-quality images. In this study, PRECEDENCE 16 was used to reconstruct images using the filtered back projection method, which is generally used, and the Astonish method and three-dimensional ordered-subsets expectation maximization method, which are based on repetition techniques. In qualitative and quantitative analysis of the reconstructed images, a comparison was made between images with different acquisition times and between images with the same acquisition time, which aimed at determining the optimal method for reconstructing high-quality images. A blind test for qualitative analysis confirmed almost no difference in image quality depending on the image acquisition time. Furthermore, in quantitative analysis, there was no significant difference in image quality depending on the image acquisition time. On the other hand, the results of the analysis in the image reconstruction method with the same acquisition time demonstrated a significant difference. The images reconstructed by the Astonish method, which uses a repetition technique, are believed to be excellent because they have high resolution and provide clinical diagnostic information. This study confirmed that the reconstruction method with a repetition technique could be used to improve image quality and reduce the scan time, despite not being in general use until recently due to the lengthy time needed for image reconstruction and lack of storage space.  相似文献   

15.
We present for the first time a complete characterization of a micro-solenoid for high resolution MR imaging of mass- and volume-limited samples based on three-dimensional B(0), B(1) per unit current (B(1)(unit)) and SNR maps. The micro-solenoids are fabricated using a fully micro-electromechanical systems (MEMS) compatible process in conjunction with an automatic wire-bonder. We present 15 μm isotropic resolution 3D B(0) maps performed using the phase difference method. The resulting B(0) variation in the range of [-0.07 ppm to -0.157 ppm] around the coil center, compares favorably with the 0.5 ppm limit accepted for MR microscopy. 3D B(1)(unit) maps of 40 μm isotropic voxel size were acquired according to the extended multi flip angle (ExMFA) method. The results demonstrate that the characterized microcoil provides a high and uniform sensitivity distribution around its center (B(1)(unit) = 3.4 mT/A ± 3.86%) which is in agreement with the corresponding 1D theoretical data computed along the coil axis. The 3D SNR maps reveal a rather uniform signal distribution around the coil center with a mean value of 53.69 ± 19%, in good agreement with the analytical 1D data along coil axis in the axial slice. Finally, we prove the microcoil capabilities for MR microscopy by imaging Eremosphaera viridis cells with 18 μm isotropic resolution.  相似文献   

16.
An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H_2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.  相似文献   

17.
张斌  宋旸  贺安之 《光学学报》2007,27(5):53-858
从不适定问题的求解思想出发,建立了使用Tikhonov正则化方法计算流场参量分布的光偏折层析重建技术。理论上详细讨论了偏折信息的转化、投影方程组的正则化、以及由共轭梯度法实现求解等三个主要步骤。用数值模拟考察该方法对非对称温度分布的重建效果,分别计算了对应不同采样数的欠定与超定投影方程组。结果表明,10次迭代后重建分布的平均误差和峰值误差分别为2.1%和5.2%。使用正则化方法对采集的多方向叠栅偏折投影进行计算,重建出双峰温度场。结果表明,使用正则化方法的双峰值相对误差略高,迭代次数减少,可提高重建效率。  相似文献   

18.
烟羽断层重建质量受两方面条件限制:其中一个限制条件是遥感设备的时间分辨率。以往的研究多使用多轴差分吸收光谱仪(MAX-DOAS)进行CT重建,受采集数据速度的限制,重建图像的时间分辨率较低。另一个限制条件是,采集到的数据量有限,是典型的不完全角度重建。过去多使用代数迭代重建算法或统计迭代重建算法,重建图像受测量误差的影响比较大,分辨率较低且伪影较多。构造了基于成像差分吸收光谱技术(IDOAS)的光谱数据采集系统,与多轴差分吸收光谱仪构造的系统相比,数据采集的时间分辨率提高了160多倍,基本解决了时间分辨率的问题。提出了一种基于压缩感知理论和低三阶导数模型的烟羽断层重建算法--投影凸函数集低三阶导数法,简称为POCS-LTD。在投影的过程中,使用代数重建算法使重建图像符合投影方程;在全变分迭代的过程中使用了优化算法,将低三阶导数模型的全变分归一化值作为优化算法的迭代方向,前次迭代运算结果与本次投影运算的差值的模作为迭代步长。对重建算法进行了数值模拟,并以重建图像的接近度和一致性相关因子为指标,对重建结果进行了分析。数值模拟表明,算法具有良好的抗误差能力,与传统的低三阶导数法相比,本文提出的算法将重建接近度减小了80%以上。使用烟羽数据采集系统进行了外场实验,用POCS-LTD算法对外场实验的数据进行了烟羽重建,重建图像显示烟羽图像清晰,伪影得到了较好的抑制。介绍的烟羽断层数据采集系统和烟羽断层重建算法,提高了烟羽断层重建图像的时间分辨率,减少了重建图像的伪影,扩大了光谱测量技术的应用范围。  相似文献   

19.
X射线光场成像技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
戚俊成  刘宾  陈荣昌  夏正德  肖体乔 《物理学报》2019,68(2):24202-024202
X射线三维成像技术是目前国内外X射线成像研究领域的一个研究热点.但针对一些特殊成像目标,传统X射线计算层析(CT)成像模式易出现投影信息缺失等问题,影响CT重建的图像质量,使得CT成像的应用受到一定的限制.本文主要研究了基于光场成像理论的X射线三维立体成像技术.首先从同步辐射光源模型出发,对X射线光场成像进行建模;然后,基于光场成像数字重聚焦理论,对成像目标场在深度方向上进行切片重建.结果表明:该方法可以实现对成像目标任一视角下任一深度的内部切片重建,但是由于光学聚焦过程中的离焦现象,会引入较为严重的背景噪声.当对其原始数据进行滤波后,再进行X射线光场重聚焦,可以有效消除重建伪影,提高图像的重建质量.本研究既有算法理论意义,又可应用于工业、医疗等较复杂目标的快速检测,具有较大的应用价值.  相似文献   

20.
GRASP (Golden-Angle Radial Sparse Parallel MRI) is a data acquisition and reconstruction technique that combines parallel imaging and golden-angle radial sampling. The continuously acquired free breathing Dynamic Contrast Enhanced (DCE) golden-angle radial MRI data of liver and abdomen has artifacts due to respiratory motion, resulting in low vessel-tissue contrast that makes GRASP reconstructed images less suitable for diagnosis. In this paper, DCE golden-angle radial MRI data of abdomen and liver perfusion is sorted into different motion states using the self-gating property of radial acquisition and then reconstructed using GRASP. Three methods of amplitude-based data binning namely uniform binning, adaptive binning and optimal binning are applied on the DCE golden-angle radial data to extract different motion states and a comparison is performed with the conventional GRASP reconstruction. Also, a comparison among the amplitude-based data binning techniques is performed and benefits of each of these binning techniques are discussed from a clinical perspective. The image quality assessment in terms of hepatic vessel clarity, liver edge sharpness, contrast enhancement clarity and streaking artifacts is performed by a certified radiologist. The results show that DCE golden-angle radial trajectories benefit from all the three types of amplitude-based data binning methods providing improved reconstruction results. The choice of binning technique depends upon the clinical application e.g. uniform and adaptive binning are helpful for a detailed analysis of lesion characteristic and contrast enhancement in different motion states while optimal binning can be used when clinical analysis requires a single image per contrast enhancement phase with no motion blurring artifacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号