首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin–Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori–Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.  相似文献   

2.
The paper discusses nonlocal elasticity theories among which are models of media with defect fields, gradient elasticity theories, and hybrid nonlocal elasticity theories. Gradient theories are analyzed, and their correctness properties are examined. Applied theories that satisfy the correctness conditions are developed, and known applied gradient theories are verified for the correctness properties. A new nonlocal generalized theory has been developed for which the operator of balance equations is represented as the product of the equilibrium operator of classical elasticity theory and the Helmholtz operator. It is shown that this theory is one-parameter and is the only representative of hybrid models constructed by a complete system of equations for forces and moments. Unlike classical elasticity that is free from scale parameters characterizing the internal material structure, nonlocal elasticity theories naturally incorporate these parameters. That is why they are suitable for the modeling of scale effects and find application in the solution of numerous applied problems for heterogeneous structures with developed phase interfaces where the degree of influence of scale effects depends on the density of phase boundaries. Nonlocal continuum models are especially attractive for modeling the properties of various micro/nanostructures, elastic properties of composites and structured materials with submicron- and nanosized internal structures in which effective properties are to a great extent defined by the scale effects (short-range interaction effects of cohesion and adhesion). Generalized elasticity theories even for isotropic materials contain many additional physical constants that are difficult or impossible to determine experimentally. Applied models with a small number of additional physical parameters are therefore of great interest. However, the reduction of nonlocal theories aimed at reducing the number of additional parameters is a nontrivial task and may lead to incorrect theories. The goal of this paper is to study the symmetry properties in gradient theories, to analyze the correctness of gradient theories, and to develop applied one-parameter elasticity theories.  相似文献   

3.
4.
ABSTRACT

This article investigates wave propagation behavior of a multi-phase nanocrystalline nanobeam subjected to a longitudinal magnetic field in the framework of nonlocal couple stress and surface elasticity theories. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, couple stress and surface effects are omitted. Hamilton’s principle is employed to derive the governing equations which are solved by applying an analytical method. The frequencies are compared with those of nonlocal and couple stress-based beams. It is showed that wave frequencies and phase velocities of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, magnetic field, surface effect and nonlocality.  相似文献   

5.
《Current Applied Physics》2015,15(11):1389-1396
Predominance of nano-scale effects observed in material behavior at small scales requires implementation of new simulation methods which are not merely based on classical continuum mechanic. On the other hand, although the atomistic modeling methods are capable of modeling nano-scale effects, due to the computational cost, they are not suitable for dynamic analysis of nano-structures. In this research, we aim to develop a continuum-based model for nano-beam vibrations which is capable of predicting the results of molecular dynamics (MD) simulations with considerably lower computational effort. In this classical-based modeling, the surface and core regions are taken to have different mechanical properties, where core atoms are assumed to have macroscale properties whereas surface layer is showing a different elastic modulus from the core components. By estimating physical parameters of proposed classical model using molecular dynamics results and the genetic algorithm, calibrated classical Euler–Bernoulli and Timoshenko beam models are developed. The results demonstrates that a Timoshenko beam model incorporating surface effects and having calibrated parameters, is able to provide almost the same results as molecular dynamics method which can be used to predict the vibrational behavior of nano-beams at different scales from nano to macro.  相似文献   

6.
A nonlocal Euler–Bernoulli elastic beam model is developed for the vibration and instability of tubular micro- and nano-beams conveying fluid using the theory of nonlocal elasticity. Based on the Newtonian method, the equation of motion is derived, in which the effect of small length scale is incorporated. With this nonlocal beam model, the natural frequencies and critical flow velocities for the case of simply supported system and for the case of cantilevered system are obtained. The effect of small length scale (i.e., the nonlocal parameter) on the properties of vibrations is discussed. It is demonstrated that the natural frequencies are generally decreased with increasing values of nonlocal parameter, both for the supported and cantilevered systems. More significantly, the effect of small length scale on the critical flow velocities is visible for fluid-conveying beams with nano-scale length; however, this effect may be neglected for micro-beams conveying fluid.  相似文献   

7.
A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with experimental data found recently for an edge dislocation in graphene.  相似文献   

8.
We study elasticity of spontaneously orientationally ordered amorphous solids, characterized by a vanishing transverse shear modulus, as realized by nematic elastomers and gels. We show that local heterogeneities and elastic nonlinearities conspire to lead to anomalous nonlocal universal elasticity controlled by a nontrivial infrared fixed point. Namely, such solids are characterized by universal shear and bending moduli that, respectively, vanish and diverge at long scales, are universally incompressible, and exhibit a universal negative Poisson ratio and a non-Hookean elasticity down to arbitrarily low strains. Based on expansion about five dimensions, we argue that the nematic order is stable to thermal fluctuation and local heterogeneities down to d(lc)<3.  相似文献   

9.
A nonlocal Euler–Bernoulli elastic beam model is developed for the vibration and instability of tubular micro- and nano-beams conveying fluid using the theory of nonlocal elasticity. Based on the Newtonian method, the equation of motion is derived, in which the effect of small length scale is incorporated. With this nonlocal beam model, the natural frequencies and critical flow velocities for the case of simply supported system and for the case of cantilevered system are obtained. The effect of small length scale (i.e., the nonlocal parameter) on the properties of vibrations is discussed. It is demonstrated that the natural frequencies are generally decreased with increasing values of nonlocal parameter, both for the supported and cantilevered systems. More significantly, the effect of small length scale on the critical flow velocities is visible for fluid-conveying beams with nano-scale length; however, this effect may be neglected for micro-beams conveying fluid.  相似文献   

10.
The modeling of the elastic properties of disordered or nanoscale solids requires the foundations of the theory of elasticity to be revisited, as one explores scales at which this theory may no longer hold. The only cases for which microscopically based derivations of elasticity are documented are (nearly) uniformly strained lattices. A microscopic approach to elasticity is proposed. As a first step, microscopically exact expressions for the displacement, strain and stress fields are derived. Conditions under which linear elastic constitutive relations hold are studied theoretically and numerically. It turns out that standard continuum elasticity is not self-evident, and applies only above certain spatial scales, which depend on details of the considered system and boundary conditions. Possible relevance to granular materials is briefly discussed. Received 18 March 2002 and Received in final form 29 May 2002  相似文献   

11.
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.  相似文献   

12.
We investigate transport through hybrid structures consisting of two normal metal leads connected via tunnel barriers to one common superconducting electrode. We find clear evidence for the occurrence of nonlocal Andreev reflection and elastic cotunneling through a superconductor when the separation of the tunnel barrier is comparable to the superconducting coherence length. The probability of the two processes is energy dependent, with elastic cotunneling dominating at low energy and nonlocal Andreev reflection at higher energies. The energy scale of the crossover is found to be the Thouless energy of the superconductor, which indicates the phase coherence of the processes. Our results are relevant for the realization of recently proposed entangler devices.  相似文献   

13.
This Letter considers the axial instability of double-nanobeam-systems. Eringen's nonlocal elasticity is utilized for modelling the double-nanobeam-systems. The nonlocal theory accounts for the small-scale effects arising at the nanoscale. The small-scale effects substantially influence the instability (or buckling) of double-nanobeam-systems. Results reveal that the small-scale effects are higher with increasing values of nonlocal parameter for the case of in-phase (synchronous) buckling modes than the out-of-phase (asynchronous) buckling modes. The increase of the stiffness of the coupling elastic medium in double-nanobeam-system reduces the small-scale effects during the out-of-phase (asynchronous) buckling modes. Analysis of the scale effects in higher buckling loads of double-nanobeam-system with synchronous and asynchronous modes is also discussed in this Letter. The theoretical development presented herein may serve as a reference for nonlocal theories as applied to the instability analysis of complex-nanobeam-system such as complex carbon nanotube system.  相似文献   

14.
The Yukawa shear viscosity has been calculated using nonequilibrium molecular dynamics. Near the viscosity minimum, we find exponential decay consistent with the Navier-Stokes equation, with significant deviations on finite length scales for larger viscosity values. The viscosity is determined to be nonlocal on a scale length consistent with the correlation length, revealing the length scales necessary for obtaining transport coefficients in the hydrodynamic limit by nonequilibrium molecular dynamics methods. Our results are quasiuniversal with respect to excess entropy for excess entropies well below unity.  相似文献   

15.
L.L. Zhang  X.Q. Fang  G.Q. Nie 《哲学杂志》2013,93(18):2009-2020
Within the framework of nonlocal elasticity, the surface layer model is proposed to investigate the wave propagation characteristics in a single-layered nanoplate. The general solutions of nonlocal governing equations are expressed using partial wave technique and the nonclassical boundary conditions are derived. The dispersion relation with the effects of surface and nonlocal small-scale is obtained, and the size-dependent dispersion behaviour is demonstrated. The impacts of surface elasticity, residual surface stress and nonlocal parameter on the dispersion curves of the lowest-order two modes are illustrated. Numerical examples reveal that both the surface effect and nonlocal small-scale effect can obviously decrease the magnitude of phase velocity, and the thinner nanoplate corresponds to the smaller wave velocity and the narrower frequency bandwidth.  相似文献   

16.
《Physics letters. A》2006,349(5):370-376
A nonlocal multiple-shell model is developed for the elastic buckling of multi-walled carbon nanotubes under uniform external radial pressure on the basis of theory of nonlocal elasticity. The effect of small length scale is incorporated in the formulation. An explicit expression is derived for the critical buckling pressure for a double-walled carbon nanotube. The influence of the small length scale on the buckling pressure is examined. It is concluded that the critical buckling pressure for a carbon nanotube could be overestimated by the classic (local) shell model due to ignoring the effect of small length scale.  相似文献   

17.
Ali Doğgan 《Pramana》1995,44(5):397-404
The internal friction associated with martensite is calculated using elastic interaction energy between dislocations and solute atoms in nonlocal elasticity during low temperature aging process. The relaxation strength depends on the lattice parameter of the crystal as well as the temperature and the heating rate. The peak heights increase with increasing lattice parameter. The proposed model can demonstrate more realistically the shape of the change of internal friction versus temperature when nonlocal elasticity is included.  相似文献   

18.
The booming development of nanotechnology motivates the widespread applications of piezoelectric nanomaterials (e.g. ZnO, ZnS, GaN) and their nanostructures (e.g. nanobelts, nanorings nanowires). It is noted that the coupled field analysis of nano-sized piezoelectric structure under non-uniform temperature in-service environment is of great importance for the fabrication and exploitation of nanoelectromechanical devices. In such situation, spatial size effect of heat conduction is necessary to be taken into account due to its important significance in characterizing the nonlocal feature of heat transport in nanosystems. In this study, thermal nonlocal effect is introduced into the thermo-electro-mechanical model based on nonlocal elasticity theory to further shed light on the size-dependent coupling behavior of thermal, electric, and elastic fields. The coupled field equations involving size-dependent parameters are derived. The solutions can be obtained using Laplace transformation methods. Parametric studies are conducted to evaluate the influences of thermal as well as elastic nonlocal parameters on the transient responses. The results indicate that the piezoelectric performance of the nanoplate is greatly improved in the presence of thermal nonlocal effect.  相似文献   

19.
Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators.  相似文献   

20.
A linear elastic fracture mechanics (LEFM) approach was used to study fracture characteristics of ABS materials. The effects of crack (ligament) length and rubber content on the microscopic deformations taking place at the front of crack tip and in the bulk of the specimens were investigated. The results of fractography studies showed that, in addition to rubber content, the microscopic deformations are influenced by crack length. For some materials this manifests itself as a change in macroscopic response. The ligament length dependent behavior was increased for the samples with higher rubber contents. The results also showed that, although the elastic behavior with unstable crack growth is the dominant micromechanism of deformation, stable crack propagation still occurred in some compositions. All the fracture parameters, including fracture toughness, fracture energy, plastic zone size, and crack tip opening, increased with rubber content. The changes in microscopic and, as a consequence, in the macroscopic deformation behavior of a given specimen with ligament length were attributed to changes in yield stress of the sample and maximum stress on the ligament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号