首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the atomistic details of a single atom-extraction process realized by using the scanning tunneling microscope tip-cluster interaction on a Ag(111) surface at 6 K. Single atoms are extracted from a silver cluster one atom at a time using small tunneling biases less than 35 mV. Combined total energy calculations and molecular dynamics simulations show a lowering of the atom-extraction barrier upon approaching the tip to the cluster. Thus, a mere tuning of the proximity between the tip and the cluster governs the extraction process. The atomic precision and reproducibility of this procedure are demonstrated by repeatedly extracting single atoms from a silver cluster on an atom-by-atom basis.  相似文献   

2.
A model for the formation of helical multishell gold nanowires is proposed and is confirmed with quantum mechanical molecular dynamics simulations. The model can explain the magic number of the helical gold nanowires in the multishell structure. The reconstruction from ideal nonhelical to realistic helical nanowires consists of two stages: dissociations of atoms on the outermost shell from atoms on the inner shell and slip deformations of atom rows generating (111)-like structure on the outermost shell. The elementary processes are governed by competition between energy loss and gain by s and d electrons together with the width of the d band. The possibility for the helical nanowires of platinum, silver, and copper is discussed.  相似文献   

3.
We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations.  相似文献   

4.
Ab initio molecular dynamics simulations of a solitary perdeuterated water molecule solvated in supercritical carbon dioxide have been performed along an isotherm at three different densities. Electron donor-acceptor interactions between the oxygen atom of water and the carbon atom of CO2 as well as hydrogen bonded interactions between the two molecules have been shown to play a dominant role in the solvation. The mean dipole moment of the water molecule increases with the density of the solution, from a value of 1.85 D at low density to around 2.15 D at the highest density. The increase in the solvent density causes the water molecule to exhibit a range of behavior, from a free molecule to one that interacts strongly with CO2. A blue shift in the bending mode of water has been observed with increasing solvent density. The carbon dioxide molecules which are present in the first neighbor shell of water are found to exhibit larger propensity to deviate from a linear geometry in their instantaneous configurations.   相似文献   

5.
The results of molecular dynamics simulations of the diffusion of self-interstitial atom clusters in Fe–Cr alloys of different Cr content are presented. It is shown that, with increasing Cr concentration, the cluster diffusivity first decreases and then increases, in accordance with the predictions of a model developed recently and based on molecular static calculations. The minimum diffusivity is found at about 10 at% Cr for small clusters and it shifts towards lower concentration with increasing cluster size. The migration energy of SIA clusters is found to lie in between the binding energy of a Cr atom with a crowdion and half of it. This indicates that the mechanism of cluster migration is via the movement of individual crowdions from one Cr atom to another. The values obtained statically are much higher and are argued to be more reliable due to better sampling of different configurations in a bigger simulation box.  相似文献   

6.
3D non-equilibrium molecular dynamics (NEMD) simulations using embedded atom potentials method (EAM) are performed to identify the dynamics processes of atomic-scale interfacial friction taking places in metal tribopairs. A block-block sliding simulation model for soft-to-hard (Cu/Fe) and soft-to-soft (Cu/Ag) tribopairs with is built. The microstructural evolution and temperature variation of the two tribopairs are analyzed at different sliding speeds. The results show that the average temperature of the two different tribopairs both increases rapidly during the transient sliding period. The different microstructural changes for the two tribopairs, including extensive plastic deformation, mechanical mixing and material transfer are observed when the temperature rapidly increases. The characteristics of the friction effects for the two tribopairs are also revealed by analyzing the friction force evolution as a function of time and velocity.  相似文献   

7.
采用基于第一性原理的密度泛函理论(DFT)和局域密度近似(LDA)方法,优化计算硅铝酸银分子筛吸附Ne原子体系的几何结构,能量,电子能带和电荷密度分布。结果表明,硅铝酸银为层状的周期结构,具有直径为a=5.390 Å的孔道。在分子晶体孔道的轴线上,桥O原子附近(I)和表面Ag+离子附近(II)的能量均有利于对Ne原子的吸附。尽管Ne(I)的能量最低,但是SiO4四面体排斥产生的能垒在动力学上不利于Ne原子的吸附。电子能带和电荷分布显示,Ne(II)原子主要受库仑极化的影响,其电子能带的能量较高,Ne(I)原子与桥O原子之间的共价作用能够降低对应的电子能带能量。  相似文献   

8.
采用基于第一性原理的密度泛函理论(DFT)和局域密度近似(LDA)方法,优化计算硅铝酸银分子筛吸附Ne原子体系的几何结构,能量,电子能带和电荷密度分布。结果表明,硅铝酸银为层状的周期结构,具有直径为a=5.390 Å的孔道。在分子晶体孔道的轴线上,桥O原子附近(I)和表面Ag+离子附近(II)的能量均有利于对Ne原子的吸附。尽管Ne(I)的能量最低,但是SiO4四面体排斥产生的能垒在动力学上不利于Ne原子的吸附。电子能带和电荷分布显示,Ne(II)原子主要受库仑极化的影响,其电子能带的能量较高,Ne(I)原子与桥O原子之间的共价作用能够降低对应的电子能带能量。  相似文献   

9.
采用基于嵌入原子方法的分子动力学,模拟了熔融Cu55团簇在Cu衬底(010)表面上以两个不同降温速率降温过程中结构的变化.模拟结果表明,降温速率对团簇结构的变化有很大影响.较快的降温速率使得降温过程中团簇原子具有较低的能量;较慢的降温速率有助于高温时位于衬底内的原子向衬底表面扩散,排列形成面心立方结构.  相似文献   

10.
A new two step oxidation model is proposed that describes the mechanism of internal oxidation of the non-noble impurities antimony and indium in silver. We have found that internal oxidation at 550 K leads to the formation of isolated SbO2 or InO2 molecules, respectively. The commonly used model of Wagner treats the oxidation as a one step process, which means that in the case of antimony and indium two oxygen atoms must be trapped effectively in one step. Assuming a trapping radius of one lattice constant this model predicts an oxidation front that is much steeper than observed experimentally. The two step oxidation model assumes that first one oxygen atom is trapped at the non-oxidized impurity to form a relatively unstable complex. If within the lifetime of this complex a second oxygen atom is trapped, a stable and completely oxidized complex is formed in the silver matrix. The two step oxidation model predicts the shape of the oxidation front during internal oxidation at 550 K of antimony or indium in silver single crystals correctly, when a dissociation energy of 0.60(5) eV for the unstable complex is taken.  相似文献   

11.
采用基于嵌入原子方法的分子动力学,模拟了熔融Cu55团簇在Cu衬底(010)表面上以两个不同降温速率降温过程中结构的变化.模拟结果表明,降温速率对团簇结构的变化有很大影响.较快的降温速率使得降温过程中团簇原子具有较低的能量;较慢的降温速率有助于高温时位于衬底内的原子向衬底表面扩散,排列形成面心立方结构. 关键词: 团簇 凝固 分子动力学 表面  相似文献   

12.
We present an analysis based on molecular dynamics simulations of water single particle and collective density fluctuations in a protein crystal at 150 and 300 K. For the collective dynamics, the calculations predict the existence of two sound modes. The first one around 35 meV is highly dispersive and the second one around 9 meV is weakly dispersive in the k range studied here (0.5相似文献   

13.
Core–shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper–silver core–shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young’s modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young’s modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper–silver core–shell nanowires, several times than that of bulk copper and silver. These copper–silver core–shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.  相似文献   

14.
本文采用基于嵌入原子法的正则系综分子动力学方法在原子尺度上计算了包含87个原子的Cu87金属团簇在连续升温和急冷降温时的结构演化过程。根据原子平均势能、对分布函数、原子堆积结构和主要原子键对数目随温度的变化表明,温度的不同极大地影响团簇内的原子堆积结构。在升温过程中,随着温度的升高,团簇内原子堆积结构出现由密排六方、二十面体直到无序堆积的变化。在急冷降温过程中,随着急冷温度的降低,团簇内由出现的一定数量的二十面体和面心立方的局域结构、数量不一的HCP,FCC和二十面体局域结构,直到急冷温度较低时的一定数量的二十面体局域结构。  相似文献   

15.
In the present study, we present an accelerating scheme based on the reversible multiple time step r-RESPA method to be used in molecular dynamics simulations with polarizable potentials based on induced dipole moments. Even if the induced dipoles are estimated with an iterative self-consistent procedure, this scheme significantly reduces the CPU time needed to perform a molecular dynamics simulation, up to a factor 2, as compared to the Car–Parrinello method where additional dynamical variables are introduced for the treatment of the induced dipoles. The tests show that stable and reliable molecular dynamics trajectories can be generated with that scheme, and that the physical properties derived from the trajectories are equivalent to those computed with the classical all atom iterative approach and the Car–Parrinello one.  相似文献   

16.
应用分子动力学方法研究温度为10和50 K时具有二十面体结构的Cu13团簇以不同接触条件与Cu(001)表面结合后的结构变化,原子间的相互作用势采用Johnson的嵌入原子方法模型.通过基于原子密度分布函数的分析表明,负载团簇与表面的结合能主要受团簇与载体相接触的最低层原子数及这些原子所具有的不同几何构型影响,同时更高层的原子呈现出不同的几何结构.温度为10 K时,负载团簇的初始位置对团簇几何结构和结合能影响较大.  相似文献   

17.
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time,in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions,one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.  相似文献   

18.
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.  相似文献   

19.
A consistent explanation of the formation of a ring-shaped pattern of exciton luminescence in GaAs/AlGaAs double quantum wells is suggested. The pattern consists of two concentric rings around the laser excitation spot. It is shown that the luminescence rings appear due to the in-layer transport of hot charge carriers at high photoexcitation intensity. Interestingly, one of two causes of this transport might involve self-organized criticality (SOC) that would be the first case of the SOC observation in semiconductor physics. We test this cause in a many-body numerical model by performing extensive molecular dynamics simulations. The results show good agreement with experiments. Moreover, the simulations have enabled us to identify the particular kinetic processes underlying the formation of each of these two luminescence rings.  相似文献   

20.
In this study, the effects of nitrogen atom substitution and curvature on the thermal conductivity of graphene are studied using non-equilibrium molecular dynamics (NEMD) simulations. Using the optimized Tersoff potential proposed by Lindsay and Broido [L. Lindsay, D.A. Broido, Phys. Rev. B 82 (2010) 205441], the predicted thermal conductivity of graphene is close to the experimental range. It was observed that only 1% concentration of nitrogen doping in graphene decreases the thermal conductivity of graphene by more than 50% and removes its chirality dependency. Our simulations also show that graphene is a high flexible structure and suggest limited curvature effects on its thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号