首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
2.
3.
4.
5.
6.
The thermal and magnetothermal properties of La0.5Pr0.5Mn2Si2 and isostructural LaFe2Si2 intermetallic compounds in the temperature range 4.5-303 K are reported with and without applied magnetic field. The electronic, lattice, and magnetic contributions to the heat capacity of La0.5Pr0.5Mn2Si2 are determined and analyzed. We have determined and from heat capacity experiments; the values are in line with those from the magnetization measurements. We conclude that in order to observe the anomaly in the heat capacity data around in the system, the transition around should occur in a narrow temperature interval.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
We present the infrared and Raman study of the optical phonon modes of the defective compounds ZnGa2Se4 and ZnGa2S4. Most of the compounds have been found to crystallize in the thiogallate structure (defect chalcopyrite) with space group where all cations and vacancies are ordered. For some Zinc compounds a partially disordered cationic sublattice with various degrees of cation and vacancy statistical distribution, which lead to the higher symmetry (defect stannite), has been reported. For ZnGa2Se4 we have found three modes of A symmetry, showing Raman activity only. In addition, we have observed each five modes of B and E symmetry, showing infrared as well as Raman activity. The number of modes and their symmetry assignment, based on polarized measurements, clearly indicate space group for the investigated crystals of ZnGa2Se4.Regarding ZnGa2S4 we have found three modes exclusively showing Raman activity (2A⊕1B1), and only eight modes showing infrared as well as Raman activity (3B2⊕5E). The assignment of the modes has been derived by analyzing the spectral positions of the vibrational modes in comparison to a number of compounds. From the number and symmetry assignment of the optical phonon modes we confirm that ZnGa2S4 most likely crystallizes in space group .  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号