首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
An Ultrasonic Phased Array (UPA) transducer is presented for borehole imaging and casing inspection in acoustical logging. First, a Cylindrical Linear Phased Array (CLPA), which is made up of numbers of piezoelectric elements distributed on the surface of a cylinder uniformly, is designed and fabricated. By transmitting and receiving acoustic waves using different groups of elements under the control of the electric system, the CLPA can gcan all area of the borehole wall dynamically and rapidly. Then the radiation and reflection acoustic fields of the CLPA are investigated theoretically in the casing borehole with defects. Finally, the experimental researches about ultrasonic scanning and imaging for the casing boreholes with defects have been conducted by the CLPA transducer. The experimental results consist well with the theoretical ones.  相似文献   

2.
The focused acoustic field generated by an annular array interface are investigated theoretically and experimentally. transducer and its reflection field on a solid-liquid Theoretically, the concise analytic expressions about the radiation and reflection acoustic fields of the annular phased array are obtained by the ray approach method (saddle-point method). In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experiments about the radiation acoustic field and its reflection on the liquid-solid interface are carried out. The experimental characteristics of the transducer are in good agreement with the numerical ones. It shows the correctness of the theoretical result and the feasibility of dynamic focusing of the experiment system. With the maximum amplitude and its emergence time of the reflection wave, we can acquire the information and the imaging of the reflection interface by the annular phased array dynamic focusing.  相似文献   

3.
Based on a theoretical motion equation of encapsulated microbubbles within an ultrasound field, the subharmonic characterizations of microbubbles are optimally designed and analyzed by a computer aided design system. The effects of size, shell elasticity and acoustic pressure on subharmonic response of microbubbles are calculated theoretically to obtain the optimal parameters for nondestructive subharmonic imaging. In addition, microbubbles with different shell elasticity are prepared, and their subharmonic responses are measured in vitro. The results of theoretical calculation and acoustic measurement show that good subharmonic enhancement can be obtained by using the encapsulated microbubbles with the mean size of 3 μm, which were prepared from the surfactant solution with the proper ratio of shell material. It is also shown that the best operating acoustic pressure is 200 to 400 kPa for nondestructive subharmonic imaging based on such kind of microbubbles.  相似文献   

4.
The non-integral dimensions ultrasonic phased arrays and their scanning and testing methods in a borehole are studied. First, the focusing acoustic fields excited by the 1.25D, 1.5D, and 1.75D phased arrays are analyzed, and then the imaging resolution in the elevation direction and the influence of the dynamic elements are investigated. Second, the focusing and deflexion characteristics of the acoustic fields excited by the annular and segmented annular phased arrays are studied, and they are compared with those excited by the 2D surface array. The application method of the 1.25D, 1.5D, and 1.75D, annular and segmented annular phased arrays in acoustic logging are analyzed and discussed. It provides a theoretical foundation for the application of the ultrasonic phased arrays in acoustic logging.  相似文献   

5.
In order to detect the damage of casing boreholes, an acoustic imaging method with a two-dimensional ultrasonic array was presented. Each element of the array independently emits down ultrasonic waves, the echoes received by all elements are sampled and transmitted to a computer on ground surface, where the dynamic migration method is used to form a 2 or 3-dimensional image of the situation in the borehole. The numerical simulation and experiment are conducted that demonstrate a high imaging accuracy with a small number of elements used in array. Since the delay circuits used in the traditional phased array imaging system is not needed in this system, and all data process could be completed in a ground system. the complexity and the volume of system in borehole may be significantly simplified, which is critical to the borehole instrument.  相似文献   

6.
The characteristics of the radiation and reflection acoustical fields of an annular phased array are investigated. The effects of the element number, element radius, interelement spacing, centre frequency, focus position, and other parameters on the radiation acoustical field of the annular phased array is theoretically studied. In experiment, an annular transducer with 8 equal-area elements is designed and fabricated, and a series of experimental measurements are conducted. The radiation acoustical field and its reflection on a liquid-solid interface are theoretically and experimentally studied. The experimental result is in good agreement with the theoretical one.  相似文献   

7.
崔志文  刘金霞  姚桂锦  王克协 《中国物理 B》2010,19(8):84301-084301
<正>The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated.The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves,pseudo-Rayleigh waves,flexural waves,and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot-Tsiklauri model by calculating their velocity dispersion and attenuation coefficients.The corresponding acoustic waveforms illustrate their properties in time domain.The results are also compared with those based on generalized Biot's theory.The results show that the influence of non-Newtonian effect on acoustic guided wave,especially on the attenuation coefficient of guided wave propagation in borehole is noticeable.  相似文献   

8.
Seismoelectric fieM excited by purely torsional loading applied directly to the borehole wall is considered. A brief formulation and some computed waveforms show the advantage of using shear-horizontal (SH) transverseelectric (TE) seismoelectric waves logging to measure shear velocity in a fluid-saturated porous formation. By assuming that the acoustic field is not influenced by its induced electromagnetic field due to seismoeleetric effect, the coupling governing equations for electromagnetic field are reduced to Maxwell equations with a propagation current source. It is shown that this simplification is valid and the borehole seismoelectric conversion efficient is mainly dependent on the electrokinetic coupling coefficient. The receivers to detect the conversion electromagnetic field and to obtain shear velocity can be set in the borehole fluid in the SH-TE seismoelectric wave log.  相似文献   

9.
Laboratory cased-hole acoustic logging simulations are developed with the linear phased-array transmitter in scaled cased well models for evaluating the feasibility of extracting formation acoustic parameters through casing.The full waveforms are measured with different cement bonding models.By analyzing the measured wavetrains and the time-slowness correlation graphs,it is showed that when the generation conditions of the refracted compressional wave and the refracted shear wave are reached successively by regulating the direction of acoustic beam radiated from the linear phased-array transmitter,steered angle of the main radiation lobe with both good bonding interfaces.The refracted compressional wave and the refracted shear wave can be stimulated obviously and the casing wave can be suppressed effectively,even when the casing and cement(or the cement and formation) is not bonded.Based on these observations, it is worthwhile to apply the linear phased-array transmitter to determine formation velocities,particularly in poorly bonded cased well.The works establish the experimental and theoretical foundation for new generation cased-hole acoustic logging tool development.  相似文献   

10.
A spectrum-splitting and beam-concentrating(SSBC) diffractive optical element(DOE) for three-junction photovoltaics(PV) system is designed and fabricated by five-circle micro-fabrication.The incident solar light is efficiently split into three sub-spectrum ranges and strongly concentrated on the focal plane,which can be directly utilized by suitable spectrum-matching solar cells.The system concentration factor reaches 12×.Moreover,the designed wavelengths(450 nm,550 nm and 650 nm) are spatially distributed on the focal plane,in good agreement with the theoretical results.The average optical efEciency of all the cells over the three designed wavelengths is 60.07%.The SSBC DOE with a high concentration factor and a high optical efEciency provides a cost-effective approach to achieve higher PV conversion efficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号