首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张琪  周骏  陈金平  谭晓玲 《光子学报》2013,42(3):307-310
提出并制作出一种基于锥体光纤-长周期光纤光栅-锥体光纤结构的全光纤Mach-Zehnder(M-Z)干涉仪传感器,并对其温度传感特性进行了研究.实验结果表明,固定光纤锥体和长周期光纤光栅的结构,仅改变两个光纤锥体之间的距离,对应不同的M-Z干涉谐振峰呈现出不同的温度传感特性:随着两个光纤锥体之间的距离增加,位于短波长处的谐振峰,传感器的温度灵敏度减小,而位于长波长处的谐振峰,传感器的温度灵敏度增加.当传感器长度为16.5 cm时,在1 680 nm附近的温度灵敏度达到0.102 06 nm/℃.实验结果对于锥体光纤-长周期光纤光栅组合型温度传感器的优化设计具有重要参考价值.  相似文献   

2.
长周期光纤光栅结构参数与透射谱关系的仿真研究   总被引:1,自引:0,他引:1  
利用光纤3层模型理论,通过仿真研究发现长周期光纤光栅结构参数与透射谱的变化有规律性关系,给出了一阶低次包层模与导模耦合时透射谱的变化规律。当长周期光纤光栅的纤芯、包层的半径和折射率增大时,谐振波向短波方向漂移;当长周期光纤光栅周期增大时,谐振波向长波方向漂移;当长周期光纤光栅长度增加时,谐振波没有漂移现象,但是其深度减小。通过综合分析发现:谐振波漂移方向比较明确,但是损耗峰深度的变化并没有明显的规律。  相似文献   

3.
分析了长周期光纤光栅对外界折射率的敏感特性,给出了谐振波长移动量与包层半径的变化规律和谐振波长移动量与外界折射率的变化规律。最后重点讨论了波导色散因子,这一个因子决定了由于外界折射率的变化而导致的波长向短波或者向长波移动。  相似文献   

4.
金属包层长周期光纤光栅的理论和实验研究   总被引:3,自引:0,他引:3  
金属包层长周期光纤光栅可用于对谐振波长的调谐。通过实验和理论研究了长周期光纤光栅在沉积金属包层前后谐振波长的变化规律。分析了金属包层光纤的特点,给出了金属包层光纤包层模的本征方程,并给出了这一复本征方程的求解方法。长周期光纤光栅在沉积金属包层后,对低阶包层模,谐振波长会向长波方向偏移,模次增加,偏移会增大;对高阶包层模,谐振波长向短波方向偏移。不同金属包层,谐振波长的偏移量也有一定差别。所给出的理论分析方法,可用于预测谐振波长的偏移方向和大小,对设计和制做这类长周期光纤光栅提供理论参考。  相似文献   

5.
王久玲  饶云江  朱涛  宋韵 《光学学报》2007,27(10):1730-1734
报道了一种用高频CO2激光脉冲在普通通信光纤包层边缘单侧写入的新型长周期光纤光栅。研究发现,这种长周期光纤光栅的折射率变化主要发生在光纤包层区域,而纤芯的折射率变化较小;同时该光栅的附加损耗低于0.5 dB。进一步折射率特性实验研究表明,由于其特殊的折变结构,这种光栅具有较高的外界环境灵敏度,当外界折射率在1.41~1.45范围内变化时,其谐振波长漂移量高达15.52 nm,比实验测得的用传统方法写入的长周期光纤光栅谐振波长漂移量高出近3倍,这种光栅结构在光纤传感中将具有重要的应用。  相似文献   

6.
基于四层光纤模型,采用数值模拟方法,研究了镀膜长周期光纤光栅的膜层折射率及厚度等参数对其传输谱特性的影响。结果表明,随膜厚增加,各包层模式有效折射率增大,谐振波长向短波区漂移。当膜厚达到一定数值后,有效折射率及谐振波长急剧变化,长周期光纤光栅频谱出现模式转换现象,模式跳变转折点对应最优薄膜厚度,不同薄膜介质对应不同的最优膜厚,研究对提高长周期光纤光栅传感器的敏感度具有重要的指导意义。  相似文献   

7.
为了提高长周期光纤光栅对环境介质折射率的传感灵敏度,提出一种长周期光纤光栅的周期和包层半径的结构优化.基于长周期光纤光栅的耦合模理论,分析了长周期光纤光栅的周期和包层半径的大小分别与环境介质折射率传感灵敏度的关系,讨论了长周期光纤光栅的周期和包层半径对折射率传感的影响以及控制光栅周期与包层半径对折射率传感的重要性.为使优化的长周期光纤光栅具有实用性,谐振波长设计在1.55 μm的常规波长范围,经过多次摸拟实验,提出最佳优化参量为:Λ=380 μm,rcl=17 μm,对环境介质折射率从1.26~1.38不同值的实验测试,折射率传感灵敏度达到0.000 12,长周期光纤光栅的结构优化获得理想的预期效果.  相似文献   

8.
施伟华  尤承杰  吴静 《物理学报》2015,64(22):224221-224221
利用光子晶体光纤结构的灵活性和性能的优越性, 设计了一种基于D形光子晶体光纤的折射率和温度传感器. 在D形光子晶体光纤表面抛磨并镀上金纳米薄膜, 作为表面等离子体共振传感通道用来测量液体折射率; 在包层的一个空气孔中填充温敏液体甲苯, 作为定向耦合通道实现对温度的测量. 进一步的数值计算发现, 基于定向耦合效应的温度传感和基于表面等离子体共振的折射率传感相互独立, D形光子晶体光纤同时进行折射率和温度传感检测. 在各向异性的完美匹配层边界条件下利用全矢量有限元法对该传感器特性进行了数值研究, 发现D形光子晶体光纤的空气孔直径决定了定向耦合吸收峰的中心波长和温度传感的灵敏度, 金薄膜的厚度和D形结构的抛磨深度仅影响表面等离子体共振峰的相对强度. 结果表明: 该传感器在-10–80 ℃的温度范围内具有11.6 nm/℃的温度灵敏度, 在1.34–1.44折射率范围内折射率灵敏度最高可达26000 nm/RIU.  相似文献   

9.
为了克服折射率测量过程中温度交叉敏感的影响,提出并制备了一种少模光纤长周期光栅传感器.该传感器利用CO_2激光器在少模光纤上先写入周期为654μm、长度为30mm的长周期光栅,然后用旋转平台将光纤旋转180°,再写入相同长度周期为819μm的长周期光栅制作而成,其传输光谱在1 487.2nm和1 533.0nm处出现两个由不同模式耦合形成的谐振峰,通过监测两个谐振峰差值的变化减少温度串扰,实现折射率的测量.实验结果表明:两个谐振峰差值在折射率1.333 3~1.376 6范围内的灵敏度为143nm/RIU,在温度20~70℃范围内的灵敏度为-0.002 5nm/℃,温度灵敏度远低于折射率灵敏度,具有对温度不敏感的特性.与传统光纤传感器相比,该传感器具有温度干扰小,折射率灵敏度高等优势,并且尺寸较小、结构紧凑,可在工业、水利、医学等领域广泛应用.  相似文献   

10.
利用高频CO2激光单侧曝光技术及双芯光纤的非对称性,设计并制作了一种长周期光纤光栅弯曲矢量传感器.成栅机理分析表明,光纤边缘处嵌入的纤芯极大地增强了包层中的残余应力,在CO2激光脉冲曝光时,残余应力释放作用增强,光栅质量更高;同时,双芯光纤的非对称结构以及CO_2激光单侧曝光使得光纤器件对偏振非常敏感,写制的光纤光栅在1 555.4nm谐振波长处的偏振相关损耗高达20.8dB.弯曲传感测试表明,在0~1.235m~(-1)曲率范围内,光纤光栅向+y方向弯曲时,透射谱谐振峰波长向长波方向漂移,灵敏度为2.37nm/m~(-1);光纤光栅向-y方向弯曲时,谐振峰波长向短波方向漂移,灵敏度为1.80nm/m~(-1).该弯曲矢量传感器结构简单,灵敏度高,可广泛应用于道路、桥梁等建筑的安全检测.  相似文献   

11.
镀膜长周期光纤光栅的折射率传感特性   总被引:2,自引:1,他引:1  
基于严格的光栅三包层模型及其色散方程,对镀膜长周期光纤光栅的折射率传感特性进行了详细的研究.研究发现,镀膜长周期光纤光栅的谐振波长随环境折射率的变化而变化,而且这种变化有一个跳跃,跳跃后的变化与跳跃前相同:如跳跃前向短波方向漂移,则跳跃后也向短波方向漂移.镀膜后,长周期光纤光栅的折射率探测范围得到拓宽,而且探测的灵敏度...  相似文献   

12.
基于包层模的光纤布拉格光栅折射率传感特性   总被引:5,自引:0,他引:5  
恽斌峰  陈娜  崔一平 《光学学报》2006,26(7):013-1015
提出了基于光纤布拉格光栅(FBG)包层模式的折射率传感方案。实验中,利用不同浓度的丙三醇水溶液作为外界折射率传感溶液,采用氢氟酸溶液化学腐蚀的方法来减小光纤包层的直径以增大包层模式对外界折射率的敏感度,研究了腐蚀后光纤布拉格光栅包层模式的耦合波长对外部折射率的变化关系。实验结果表明在1.3300~1.4584的折射率范围内,包层模式耦合波长随外界折射率增大而增大,在接近光纤包层折射率处具有很高的折射率灵敏度,最大达到了172 nm/riu(refractive index unit)。而且,包层模谐振的光谱半峰全宽(约0.07 nm)仅为布拉格纤芯模谐振光谱半峰全宽的1/4,能够获得更好的传感精度。  相似文献   

13.
为了提高光纤传感器的性能和进一步缩小传感器的尺寸,通过实验制备出一种基于光纤布拉格光栅(FBG)与长周期光栅(LPG)并联的新型集成光学传感器。该传感器中的FBG和LPG是利用飞秒激光直写技术直接在普通单模光纤中刻写的。FBG和LPG是并联关系,因此很大程度地缩小了传感器的长度。外界的温度和折射率的变化会引起FBG和LPG的谐振峰波长位置发生变化,据此对该集成传感器进行温度和折射率测量。实验结果表明:FBG谐振峰对折射率和温度的灵敏度分别为0 nm/RIU和12.98 pm/℃,而LPG在1 555 nm附近谐振峰对折射率和温度的灵敏度为196.46 nm/RIU和10.93 pm/℃。因此,根据双参数传感矩阵,该传感器可以对温度和外界折射率进行同时传感。  相似文献   

14.
为了提高光纤传感器的性能和进一步缩小传感器的尺寸,通过实验制备出一种基于光纤布拉格光栅(FBG)与长周期光栅(LPG)并联的新型集成光学传感器。该传感器中的FBG和LPG是利用飞秒激光直写技术直接在普通单模光纤中刻写的。FBG和LPG是并联关系,因此很大程度地缩小了传感器的长度。外界的温度和折射率的变化会引起FBG和LPG的谐振峰波长位置发生变化,据此对该集成传感器进行温度和折射率测量。实验结果表明:FBG谐振峰对折射率和温度的灵敏度分别为0 nm/RIU和12.98 pm/℃,而LPG在1 555 nm附近谐振峰对折射率和温度的灵敏度为196.46 nm/RIU和10.93 pm/℃。因此,根据双参数传感矩阵,该传感器可以对温度和外界折射率进行同时传感。  相似文献   

15.
邓传鲁  顾铮 《物理学报》2009,58(5):3230-3237
采用严格的耦合理论,研究了长周期光纤光栅各层材料色散对双峰谐振效应的影响,指出芯层和包层材料色散必须同时考虑才能切实地符合实际情况.分析了材料色散对不同膜层参数下双峰谐振LPFG透射特性的影响,模拟计算了材料色散计及与否时的双峰谐振波长,两种情形下两峰偏差值分别约在1.5—2 nm和6.5—7.5 nm浮动.最后,讨论了材料色散对双峰LPFG传感器灵敏度的影响.结果表明,此类传感器对膜层折射率的分辩率高达10-8,计及材料色散后的等高线图可为传感器灵敏度设计提供精确的参数选择组合. 关键词: 材料色散 长周期光纤光栅 双峰谐振  相似文献   

16.
在长周期光纤光栅外镀折射率随环境变化而改变的敏感薄膜,其谐振波长随薄膜折射率的变化而改变。对无吸收薄膜,光栅耦合强度为π/2时,其传输谱中谐振波长对应的损耗峰峰值为零。镀复折射率薄膜的长周期光纤光栅,耦合强度为π/2时,损耗峰不为零,在谐振波长对薄膜折射率变化响应灵敏的区域,包层模传输常数的虚部较大,损耗峰幅值减小,甚至消失,不利于谐振波长的测量。通过求解镀复折射率薄膜长周期光纤光栅的耦合模方程,得到了损耗峰峰值的解析解。找到了损耗峰为零的条件。在此条件下设计光栅,可以有效地避免损耗峰减小带来的不利因素。  相似文献   

17.
在色散补偿光纤上刻写光栅,形成全光纤复合传感结构,将干涉结构和光栅结构集成在同一段光纤内.分析了干涉包层模式和布拉格谐振峰对纵向拉力以及温度的响应机理.通过监测包层模式和布拉格谐振峰的波长漂移量,建立矩阵方程,实现对纵向拉力和温度双参量的同时测量.实验结果表明,包层模式和布拉格谐振峰对温度的响应灵敏度分别为49.4pm/℃和11.0pm/℃,包层模式对纵向拉力的响应灵敏度为1.05pm/με,布拉格谐振模式对纵向拉力的响应灵敏度为0.651pm/με,且这四个参数均表现出良好的线性度.该传感器结构采用低阶包层模式和纤芯基模模式,对外界环境折射率不敏感,能较好地应用于纵向拉力和温度的同时测量中.  相似文献   

18.
一种同时测量液体折射率和温度的方法   总被引:1,自引:0,他引:1  
由长周期光纤光栅的相位匹配条件与光纤纤芯基模LP01和光纤包层模LP0P的模式方程,利用长周期光纤光栅透射谱的谐振峰随温度与外围介质折射率变化而移动的特性,提出了同时测量水的折射率和温度的方法,并分析了其工作原理.对温度与谐振波长的关系进行了计算机仿真.用该方法进行了实验研究,实验结果与理论研究结果基本吻合.  相似文献   

19.
长周期光纤光栅的折射率敏感特性   总被引:1,自引:0,他引:1  
利用光波导的耦合模理论分析了长周期光纤光栅(LPFG)的折射率传感特性,给出了LPFG 的谐振波长相对于环境折射率变化时的漂移量解析表达式.对 LPFG 的折射率传感特性进行了数值模拟.结果表明:在光栅周期不变的情况下,当包层折射率小于且接近外界环境折射率时,波长的漂移量增大,且对应的模次越高、包层半径越小、包层折射率越小,波长漂移量越大,即 LPFG 对应于外界折射率传感灵敏度得到显著提高;当外界环境折射率大于包层折射率时,光栅的谐振波长将近似不变.  相似文献   

20.
含耐高温涂覆层长周期光纤光栅的温度特性研究   总被引:1,自引:1,他引:0  
孙伟胜  施解龙  陈园园  杨清 《光子学报》2011,(10):1490-1493
利用逐点写入法在耐高温光纤中用红外飞秒激光直接写入了长周期光纤光栅,研究了光栅的高温温度特性,并做了理论分析.通过对含耐高温涂覆层的长周期光纤光栅进行20℃~300℃的温度传感实验,结果表明:在高温段光栅的谐振波长漂移量与温度之间仍能保持大的灵敏度(0.060 5 nm/℃)和好的线性度,且光纤耐高温涂覆层不受破坏,光...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号