首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 164 毫秒
1.
超声波与光协同降解对氯苯酚水溶液的机理研究   总被引:1,自引:0,他引:1  
为阐明超声波与光协同作用机理,以对氯苯酚为研究对象,研究了对氯苯酚水溶液在超声波与光(紫外光,可见光)单独及共同辐照下的降解现象,研究发现对氯苯酚水溶液在超声波及紫外光单独辐照下均发牛降解,降解过程符合一级反应动力学规律.在超声波和紫外光共同辐照下,降解过程也符合一级反应动力学规律,同时对氯苯酚水溶液降解呈现显著的声光协同效应,即同一辐照时间内超声波和紫外光共同辐照下对氯苯酚的降解率大于超声波和紫外光单独辐照下各自降解率之和.另一方面,超声波和可见光共同辐照没有呈现出明显的卢光协同效应.超声波和紫外光共同辐照下的声光协同效应被归因于紫外光对超声空化过程中产生的过氧化氢的裂解作用.  相似文献   

2.
超声波降解有机物溶液的气泡动力学研究   总被引:1,自引:0,他引:1  
在超声波降解有机物溶液过程中,超声空化产生的高温高压以及空化泡振荡产生的激波在有机物溶液的降解中发挥重要作用.本文通过对超声波作用下气泡动力学的研究,讨论了超声波声压、频率、气泡初始半径等参量对有机物溶液降解效率的影响.研究发现.存在使降解效率极大的声压和频率.在空化稳定的情况下,存在一个使降解效率极大的气泡初始半径,降解效率随着黏滞系数的增大而减小.研究还发现,双频超声作用的空化效果比单频超声作用时强,与双频超声作用下有机物溶液降解率较大这一实验结果一致.  相似文献   

3.
超声波和紫外光协同降解酸性橙Ⅱ水溶液的机理研究   总被引:6,自引:0,他引:6  
以含有多个苯环的典型偶氮染料-酸性橙Ⅱ为研究对象,研究了超声波和紫外光分别辐照及共同辐照下的降解现象.酸性橙Ⅱ水溶液在超声波及紫外光分别辐照下均发生显著降解,反应过程符合准一级反应动力学规律.在超声波和紫外光共同辐照下,反应过程也符合准一级反应动力学规律,同时酸性橙Ⅱ水溶液降解呈现显著的声光协同效应,即同一辐照时间内超声波和紫外光共同辐照下酸性橙Ⅱ的降解率大于超声波和紫外光单独辐照下各自降解率之和.动力学分析结果表明,该协同效应可归因于紫外光对超声空化过程中产生的过氧化氢的裂解作用.  相似文献   

4.
功率超声在废水处理中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
熊宜栋 《应用声学》2002,21(4):33-35,32
采用不同强度和频率的超声波,对几种生物难降解的有毒污染物(苯胺,硝基苯)废水进行超声处理,实验表明,降解效果主要取决于超声波在反应液中的声强及处理时间,同时,若辅以通氧气或加入催化剂,处理效果更好,这就为设计相应的超声废水处理设备提供了实验基础。  相似文献   

5.
灭多威的超声降解研究   总被引:12,自引:0,他引:12       下载免费PDF全文
研究了灭多威模拟废水在超声作用下的降解反应动力学、降解产物、降解途径、以及影响降解速率的因素等问题.结果表明,灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢;Fe  相似文献   

6.
给出不同空化状态下超声波降解苯酚溶液的实验结果,比较了相应的声压级频谱和合成声强。研究了苯酚溶液的浓度、二阶铁盐、超声辐照时间对苯酚降解率的影响,讨论了不同空化状态下的声压级频谱特征。  相似文献   

7.
双低频超声处理偶氮类染料模拟废水的研究   总被引:2,自引:1,他引:2       下载免费PDF全文
对用双低频超声波处理偶氮染料活性艳红X-3B模拟废水进行了实验研究。探讨了不同超声波之间的功率搭配和超声波探头之间的距离对处理效果的影响。实验表明双频超声降解效果优于单频超声,双频超声存在最佳功率搭配。在给定的实验范围内,两个超声波探头之间的最佳距离为1.5cm,US/Fenton处理污染物的效果(η值为94.90%)高于US与Fenton处理效果之和7.1个百分点。通过UV-Vis分析,观察到活性艳红X-3B处理60min后基本被矿化。  相似文献   

8.
胡松青  李琳  陈玲 《应用声学》2005,24(5):323-328
采用不同电功率的超声波处理了聚乙二醇(PEG6000)溶液。凝胶渗透色谱(GPC)分析超声处理后的PEG溶液发现,当超声电功率超过250W时,PEG分子量随超声波作用强度的增大而减少,随超声波作用时间的延长而增大;在电功率超过250W超声波作用下,傅立叶红外光谱(FT-IR)分析表明,组成PEG的单体没有明显改变,但是,羟基含量分析表明,PEG固体样品中的羟基含量有所减少。结合实验结果,根据高分子化学、有机化学和超声化学中相关理论对PEG超声化学反应机理进行了探讨,认为:当超声波作用于PEG溶液时,同时存在有PEG的缩水聚合反应和自由基降解反应,当频率为20-25kHz、电功率为250-600W的超声作用于PEG6000溶液时,缩水聚合反应占主导地位。  相似文献   

9.
超声空化状态对苯酚降解的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
给出不同空化状态下超声波降解苯酚溶液的实验结果,比较了相应的声压级频谱和合成声强。研究了苯酚溶液的浓度,二阶铁盐,超声辐射时间对苯酚降解率的影响,讨论了不同空化状态下的声压级频谱特征。  相似文献   

10.
针对多层异种金属粘接结构中粘接强度的超声检测与表征困难的问题,采用线性弹簧模型和等效弹性模量模型来分别表征界面粘附强度和内聚强度,推导了超声体波斜入射N层粘接结构的反射与透射系数表达式。通过在不同入射面和入射声波模式等条件下,同时连续改变两种参数来系统研究粘接层界面粘附强度与内聚强度变化对超声波反射与透射特性的影响关系,确定了能够敏感表征粘接强度的超声参量,为粘接强度的无损检测与评价提供理论依据。  相似文献   

11.
In this paper, ZnO/Graphene Oxide (ZnO/GO) is synthesized via ultrasound assisted precipitation method and the effect of power and ultrasound time irradiation is studied on photocatalyst properties. The synthesized samples are used for methylene blue (MB) degradation as an organic water pollutant. Physicochemical properties of the samples are investigated by XRD, FESEM, EDX, BET-BJH, FTIR and DRS techniques. Moreover, pHpzc of the sample with the best performance is calculated to study the effect of acidity on the photocatalyst efficiency in photocatalytic process. Ultrasound has a positive effect on photocatalyst performance that is because of its effect on distribution of particles and semiconductor band gap, but it has no effect on photostability of the nanocomposite. Sonication has modified distribution of particles by enhancing the active sites for oxidation process. Making structural gaps by ultrasound irradiation increases available surface area which has a similar effect on photocatalyst performance. Graphene oxide as electron collector and transporter prevents electron-hole recombination and it can be an acceptable reason for enhancement at photocatalyst performance. Finally, some of operational parameters such as pH, photocatalyst loading and dye concentration are investigated.  相似文献   

12.
Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20 kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362 kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20 kHz, micrometric particles slowdown the sonolysis of water at 362 kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects.  相似文献   

13.
Degradation under ultrasound irradiation of silica supported anthracene (Ant) in aqueous suspension is studied. The initial degradation rate of Ant on silica is 28- and 6-fold lower than the degradation rate in water alone, at 506 and 20 kHz, respectively. Analysis of emission and excitation spectra demonstrates the presence of two kinds of adsorbed Ant species: a molecular form and crystals. The former species is assumed to be initially degraded at 506 kHz, while the latter species is more difficult to decompose. Specific irradiation of micro-crystals of Ant in aqueous/methanolic solution leads to the formation of CO and CO2. A pyrolytic mechanism is expected to occur on the surface of silica and the kinetic rates would depend on the chemical nature of Ant at the surface. Added surfactants decrease dramatically the degradation rates on silica, but solubilizes Ant in larger amounts than in pure water. Surfactants are pyrolysed in water with and without silica and act more as degradation inhibitors than as Ant extracting agents.  相似文献   

14.
Uchida T  Hamano A  Kawashima N  Takeuchi S 《Ultrasonics》2006,44(Z1):e473-e476
A novel acoustic-dispersion method for fine diamond particles was developed. Two samples of nanometer-sized diamond particles were used. They had primary particle sizes of 5 nm (ND5) and 150 nm (ND150). Disaggregation of agglomerated particles using ultrasound and surface modification of ND5 and ND150 were investigated. The ND5 and ND150 particles aggregated to secondary particles, having sizes on the order of micrometers. The surfaces of ND5 and ND150 particle were modified due to chemical reactions and the particles were disaggregated by acoustic cavitation. The ND5 particles were disaggregated to give an average particle size of about 100 nm by ultrasound exposure with average acoustic intensities higher than 800 W/m(2). The agglomerated ND150 particles with size of 15 microm were disaggregated to reach an average particle size of about 300 nm by ultrasound exposure with an average acoustic intensity higher than 2000 W/m(2). The surfaces of ND5 and ND150 particles were found to be modified with hydroxyl groups resulting from acoustic cavitation. This could lead to a well dispersed solution of nanometer-sized diamond particles in water.  相似文献   

15.
ZnO/MMT nanocomposite as sonocatalyst was prepared by immobilizing synthesized ZnO on the montmorillonite surface. The characteristics of as-prepared nanocomposite were studied by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD) techniques. The synthesized samples were used as a catalyst for sonocatalytic degradation of naproxen. ZnO/MMT catalyst in the presence of ultrasound irradiation was more effective compared to pure ZnO nanoparticles and MMT particles in the sonocatalysis of naproxen. The effect of different operational parameters on the sonocatalytic degradation of naproxen including initial drug concentration, sonocatalyst dosage, solution pH, ultrasonic power and the presence of organic and inorganic scavengers were evaluated. It was found that the presence of the scavengers suppressed the sonocatalytic degradation efficiency. The reusability of the nanocomposite was examined in several consecutive runs, and the degradation efficiency decreased only 2% after 5 repeated runs. The main intermediates of naproxen degradation were determined by gas chromatography–mass spectrometry (GC–Mass).  相似文献   

16.
Influence of the ultrasound intensity (28 kHz, 1.1–7.5 W/cm2) on CaCO3 nucleation-growth on the surface of a cylinder mild steel electrode rotating at 500 rpm was studied in tap water. The deposition kinetics was analyzed by chronoamperometry; the calcareous layer was characterized by gravimetry, scanning electron microscopy and XRD. Application of ultrasound to calcium carbonate crystallization affects nucleation site density, mass-transport rate and cavitation erosion of the deposits. Lower intensity ultrasound reduces scale porosity and area density by increasing nucleation site density and accelerating the mass transport. Higher intensity ultrasound promotes cavitation erosion of the formed layer, thus cleaning the surface from the scale. A scale layer with the highest blocking properties formed under applied ultrasound intensity of 1.9 W/cm2. The ultrasound doubled crystallization rate, reduced the scale porosity 5 times and halved its area density compared to non-sonicated conditions. Ultrasound of controllable intensity can solve both scale and corrosion problems of industrial heat-exchange equipment by forming a protective scale layer and removing excessive deposits.  相似文献   

17.
In this work, the sonolytic degradation of an anthraquinonic dye, C.I. Acid Blue 25 (AB25), in aqueous phase using high frequency ultrasound waves (1700 kHz) for an acoustic power of 14 W was investigated. The sonochemical efficiency of the reactor was evaluated by potassium iodide dosimeter, Fricke reaction and hydrogen peroxide production yield. The three investigated methods clearly show the production of oxidizing species during sonication and well reflect the sonochemical effects of high frequency ultrasonic irradiation. The effect of operational conditions such as the initial AB25 concentration, solution temperature and pH on the degradation of AB25 was studied. Additionally, the influence of addition of salts on the degradation of dye was examined. The rate of AB25 degradation was dependent on initial dye concentration, pH and temperature. Addition of salts increased the degradation of dye. Experiments conducted using distilled and natural waters demonstrated that the degradation was more efficient in the natural water compared to distilled water. To increase the efficiency of AB25 degradation, experiments combining ultrasound with Fe(II) or H2O2 were conducted. Fe(II) induced the dissociation of ultrasonically produced hydrogen peroxide, leading to additional OH radicals which enhance the degradation of dye. The combination of ultrasound with hydrogen peroxide looks to be a promising option to increase the generation of free radicals. The concentration of hydrogen peroxide plays a crucial role in deciding the extent of enhancement obtained for the combined process. The results of the present work indicate that ultrasound/H2O2 and ultrasound/Fe(II) processes are efficient for the degradation of AB25 in aqueous solutions by high frequency ultrasonic irradiation.  相似文献   

18.
The effect of self-purification has been discovered in small metallic particles containing impurity atoms. Due to small dimension of the particles impurities were shown to get out of the particles and to reach its surface in relatively short times. The phenomenon has been studied for small particles of Li containing Na atoms as impurities and for NiCu alloy particles. The distribution of atoms in lithium particles was studied by the ESR method and the information about the distribution of Ni atoms within CuNi alloy particles was obtained by comparing the structure date with magnetic properties.  相似文献   

19.
The degradation of the end surface of the delivery fiber due to the laser-induced hydrodynamic processes caused by the irradiation of the water-saturated tissue by CW laser with a wavelength of 970 nm and moderate power (1–10 W) is analyzed. It is demonstrated that the temperature in the vicinity of the end surface can be up to several thousand degrees at a laser intensity of about 104 W/cm2. Relatively high temperatures and pressures that are reached upon the collapse of the cavitation microbubbles lead to the formation of the nanosized diamond-phase particles and supercritical water, which also facilitates the degradation of fiber.  相似文献   

20.
Some species of bacteria produce colonies and spores which agglomerate in spherical clusters (Bacillus subtilis) and this serves as a protection for the organisms inside against biocidal attack. Flocs of fine particles e.g. clay can entrap bacteria which can also protect them against the biocides. It is because of problems such as these that alternative methods of disinfecting water are under active investigation. One such method is the use of power ultrasound, either alone or in combination with other methods. Ultrasound is able to inactivate bacteria and deagglomerate bacterial clusters or flocs through a number of physical, mechanical and chemical effects arising from acoustic cavitation. The aim of this study was to investigate the effect of power ultrasound at different powers and frequencies on Bacillus subtilis. Viable plate count techniques were used as a measure of microbial activity. Results showed a significant increase in percent kill for Bacillus species with increasing duration of exposure and intensity of ultrasound in the low-kilohertz range (20 and 38 kHz). Results obtained at two higher frequencies (512 and 850 kHz) indicated a significant increase in bacteria count suggesting declumping. In assessing the bacterial kill with time under different sonication regimes three types of behaviour were characterized:
• High power ultrasound (lower frequencies) in low volumes of bacterial suspension results in a continuous reduction in bacterial cell numbers i.e. the kill rate predominates.
• High power ultrasound (lower frequencies) in larger volumes results in an initial rise in cell numbers suggesting declumping of the bacteria but this initial rise then falls as the declumping finishes and the kill rate becomes more important.
• Low intensity ultrasound (higher frequencies) gives an initial rise in cell numbers as a result of declumping. The kill rate is low and so there is no significant subsequent decrease in bacterial cell numbers.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号