首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.  相似文献   

2.
Kang J  Wu F  Li J 《J Phys Condens Matter》2012,24(16):165301
The effect of external transverse electric fields on the bandgaps of graphdiyne nanoribbons is investigated from first-principles calculations. The giant Stark effect is observed in the ribbons. When the field is applied, the valence and conduction band edge states are found to be strongly localized at low and high potential edges of the ribbon, respectively. Due to the wavefunction localization, the bandgap decreases with increasing field strength, and a semiconductor-metal transition occurs below a threshold field value. It is also shown that the bandgap decreasing rate depends linearly on the ribbon width. The tunable bandgap of a graphdiyne nanoribbon under an electric field would be helpful for practical applications.  相似文献   

3.
二硫化钼纳米带按边界结构特征可分为锯齿型和扶手型,在制备过程中,不可避免地会存在一定的缺陷,其中硫空位(VS)最为常见,它将改变纳米结构,进而影响其电子性质。本文采用密度泛函理论来研究S空位对扶手型二硫化钼纳米带性质的影响。计算结果表明:纯扶手型二硫化钼纳米带(AMoS2NRs)为非磁性半导体,但其物性受S空位的位置及浓度所调制。当S空位出现在纳米带内部时,其性质不变。但当S空位在纳米带边缘时,AMoS2NRs被调节成半金属;并随着S空位的浓度的增加,其物性从半金属转变为稀磁半导体。这一有趣的发现将使得低维MoS2纳米材料在自旋电子学上有更宽广的应用。  相似文献   

4.
The one-dimensional spin-1/2 XXZ model in a transverse magnetic field is studied. It is shown that the field induces a gap in the spectrum of the model with the easy-plane anisotropy. Using conformal invariance, the field dependence of the gap is found at small fields. The ground state phase diagram is obtained. It contains four phases with the long-range order of different types and a disordered phase. These phases are separated by critical lines, where the gap and the long-range order vanish. Using scaling estimates, the mean-field approach, and numerical calculations in the vicinity of all critical lines, we find the critical exponents of the gap and the long-range order. It is shown that the transition line between the ordered and disordered phases belongs to the universality class of the transverse Ising model.  相似文献   

5.
Under external transverse electronic fields, the structure and electronic properties of the silicene nanoribbon with armchair edge (ASiNR) are studied. We find that the electric properties are modified by a transverse electric field. As affected by a transverse electric field, the band gap varies with increasing absolute value of the field strength. All the results can be explained using the Stark quadratic effect.  相似文献   

6.
We have investigated the electro-optical properties of zigzag BNNTs, under an external electric field, using the tight binding approximation. It is found that an electric field modifies the band structure and splits the band degeneracy. Also the large electric strength leads to coupling the neighbor subbands which these effects reflect in the DOS and JDOS spectrum. It has been shown that, unlike CNTs, the band gap of BNNTs can be reduced linearly by applying a transverse external electric field. Also we show that the larger diameter tubes are more sensitive than small ones. The semiconducting metallic transition can be achieved through increasing the applied fields. The number and position of peaks in the JDOS spectrum are dependent on electric field strength. It is found that at a high electric field, the two lowest subbands are oscillatory with multiple nodes at the Fermi level.  相似文献   

7.
The transverse electron spin magnetization of a paramagnetic center with effective spinS=1/2 interacting with nonquadrupolar nuclei may be presented as a function of pairs of nuclei magnetization vectors which precess around the effective magnetic field directions. Each vector of the pair starts its precession perpendicular to both effective fields. The free induction decay (FID) signal is proportional to the scalar product of the vectors for nuclear spinI=1/2. The electron spin echo (ESE) signal can be described with two pairs of magnetization vectors. The ESE shape is not equal to two back-to-back FID signals except in the absence of ESE envelope modulation. A recursion relation is obtained which allows calculation of ESE signals for larger nuclear spins in the absence of nuclear quadrupole interaction. This relation can be used to calculate the time course of the ESE signal for arbitrary nuclear spins as a function of the nuclear magnetization vectors. While this formalism allows quantitative calculation of modulation from nuclei, it also provides a qualitative means of visualizing the modulation based on simple magnetization vectors.  相似文献   

8.
We study the thermodynamics of degenerate electron and charged vector boson gases in very intense magnetic fields. In degenerate conditions of the electron gas, the pressure transverse to the magnetic field B may vanish, leading to a transverse collapse. For W bosons an instability arises because the magnetization diverges at the critical field B(c) = M(2)(W)/e. If the magnetic field is self-consistently maintained, the maximum value it can take is of the order of 2B(c)/3, but in any case the system becomes unstable and collapses.  相似文献   

9.
The effect of a magnetic field on the energy gap of the charge density wave (CDW) in NbSe3 near the temperature T p2 of the lower Peierls transition has been investigated using interlayer tunneling spectroscopy. It has been shown that the magnetic field increases the energy gap and can even induce it at temperatures higher than T p2 by 15–20 K. As the field strength increases, the peak amplitude of the gap singularity of the tunneling spectrum first increases, reaches its maximum at 20–30 T, and then decreases. The increase in the gap peak amplitude is attributed to the field-induced improvement of the condition of the CDW nesting, while the decrease in the amplitude in high fields, to the breakdown of the ground state caused by its Zeeman splitting.  相似文献   

10.
The eigenequation for single-layer graphene in transverse electric and perpendicular magnetic fields is investigated at a critical value |E| = υ F B. The critical solutions are not bound states and contain two unknown constants. Different from the case of the “classical” Hall effect, the electric current in the direction perpendicular to the electric and magnetic fields could be positive or negative depending on the values of the unknown constants.  相似文献   

11.
As the magnetic moment of soft under layer (SUL) decreases, the magnetic saturation during the write process becomes severe. It induces some partial erasures in the media write pattern and results in poor write performance such as an output roll-off and signal-to-noise ratio degradation. This erasure is due to the head field longitudinal component at the write gap after the transition writing in the trailing shielded pole perpendicular recording head. In case the SUL has low magnetic moment and high write current is inputted, erasure bubble appears next to the write bubble because the head field perpendicular component switches from positive to negative in the polarity. But the erasure appears even without the negative perpendicular field, and the longitudinal head field of the write gap is dominant for the erasure.  相似文献   

12.
We analyze the existence and stability of gap solitons supported by optical lattices with self-focusing nonlinearity in biased centrosymmetric photorefractive crystals. It is shown that, in first finite bandgap, gap solitons are symmetric in transverse dimension, single humped, entirely positive and linearly stable, while these solitons are antisymmetric with similar profiles, the stable and unstable intervals of the gap solitons are intertwined in the second finite bandgap.  相似文献   

13.
Using density functional theory, we systematically investigate the adsorption geometries and electrical properties of (3,3) carbon nanotube (CNT) integrated on hydrogen-terminated Si(001):1?×?1 surface. Prior to adsorption of the CNT, the surface is patterned in two different ways by desorbing selective hydrogen atoms from the surface. The (3,3) CNT which is metallic in nature becomes semiconducting with a band gap around the fermi level when it is supported on patterned hydrogen-terminated Si(001):1?×?1 surface. However, the band gap is reduced when a transverse electric field is applied, allowing the (3,3) CNT on the patterned hydrogen-terminated Si(001):1?×?1 to become metallic at a critical field strength. The tuning of electrical properties of the (3,3) CNT integrated with Si surface may have potential technological applications.  相似文献   

14.
In the present paper, oscillations of the longitudinal component of the electrical conductivity of layered crystals are examined in electric and quantizing magnetic fields perpendicular to the layers. It is demonstrated that frequencies and amplitudes of longitudinal conductivity oscillations can be determined with sufficient accuracy through the chemical potential of the electron gas and effective width of the miniband caused by the charge ordering. In addition, based on an analysis of formulas for the transverse conductivity, it is established that the applicability limits for the transverse conductivity in the semiclassical approximation (for the magnetic field induction) in the field perpendicular to the layers are much wider than for the longitudinal conductivity. An immediate reason for this is the zero longitudinal velocity of current carriers in the extreme cross sections, which leads to the field dependence of the amplitudes of longitudinal conductivity oscillations stronger than of transverse ones. Calculated results are used to interpret experimental data obtained for the β-(ET)2IBr2 synthetic metals. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 34–43, May, 2006.  相似文献   

15.
C. T. Hsieh  J. T. Lue   《Physics letters. A》2002,300(6):636-640
The classical, thermally driven transition from ferrimagnets to superparamagnets in Fe3O4 nanoparticles can be converted into another quantum phase by a transverse microwave magnetic field or by a strong internal anisotropic field. These fields, perpendicular to the Ising axis, can destroy the magnetic long-range order to quantum paramagnets as the fields exceed some critical values. We have exploited the spin resonance spectrometer to determine the dynamic spin susceptibility and the critical exponent γ, which is a power-law dependent spanning of the quantum critical point. Quantum phase transition observed at low temperatures for small magnetite nanoparticles induced by strong surface anisotropic field illustrates the fascinating interplay between thermal and quantum fluctuations in the vicinity of a quantum critical point.  相似文献   

16.
The change in the magnetic domain structure due to the proximity of a superconductor has been experimentally investigated for the first time. The complex character of magnetization reversal at temperatures below critical, caused by the mutual long-range effect of a superconductor and a magnet, has been shown. In particular, it is found that even magnetization reversal of the heterostructure by an in-plane field leads to the formation of Abrikosov vortices in the superconductor, carrying a flux perpendicularly to the film plane. It is shown that this is a consequence of the transformation of narrow domain walls into wide stripes due to the interaction with scattering fields from the superconductor. In turn, after penetration of the magnetic flux into the superconductor at some depth, the scattering fields cause backward magnetization reversal of the external film edge, as a result of which vortices with oppositely directed fluxes enter the crystal and propagate in the superconductor bulk in the form of chains along twins, as in the case of magnetization by a perpendicular magnetic field. Thus, at longitudinal magnetization, the flux enters the superconducting film in the form of wide stripes with alternating perpendicular induction, which is explained by the long-range interaction of the scattering fields of the superconductor with the manganite magnetization.  相似文献   

17.
 利用时域有限差分法对微波脉冲与带矩形孔缝的矩形和圆柱形腔体两种系统的线性耦合过程进行了研究。首先用数值方法分析了耦合过程中的场增强现象、脉宽展开现象和腔体调制现象,并发现了耦合过程中微波脉冲存在频谱分离现象。当微波脉冲的电场与孔缝窄边平行时,借助耦合函数对两个系统内部耦合场的分布特性进行了研究,结果表明在与孔缝窄边垂直的平面内,越靠近腔体壁,耦合场越弱。此外,两种腔体内部的耦合场在腔体截面内均呈现准周期振荡分布,矩形腔体内部耦合场振荡的幅值较均匀,而圆柱形腔体内部耦合场幅值在其截面中心附近区域最大;除了孔缝附近区域外,圆柱腔体轴线两端的耦合场远大于矩形腔体相应的耦合场。最后,研究了孔缝耦合共振频率与孔缝尺寸的关系,结果表明系统耦合共振频率不只与孔缝尺寸有关,而是由孔缝尺寸和腔体形状及其对微波脉冲的反射特性共同决定。  相似文献   

18.
《Current Applied Physics》2020,20(5):680-685
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) made of Sb-doped Bi2Se3 topological insulator (TI) nanoribbon (NR) contacted with PbIn superconducting electrodes. When an external magnetic field was applied along the NR axis, the TI NR exhibited periodic magneto-conductance oscillations, the so-called Aharonov-Bohm oscillations, owing to one-dimensional subbands. Below the superconducting transition temperature of PbIn electrodes, we observed supercurrent flow through TI NR-based SQUID. The critical current periodically modulates with a magnetic field perpendicular to the SQUID loop, revealing that the periodicity corresponds to the superconducting flux quantum. Our experimental observations can be useful to explore Majorana bound states (MBS) in TI NR, promising for developing topological quantum information devices.  相似文献   

19.
Magnetic field-induced dispersion of ultrasonic velocity in a Mn0.7Zn0.3Fe2O4 fluid (applied magnetic field is perpendicular to the ultrasonic propagation vector) is determined by employing continuous wave method. The magnitude of dispersion initially decreases with increasing field, then increases and reaches a plateau at higher fields. Results indicate that the velocity anisotropy is dominated by grain–grain interactions rather than grain–field interaction. At the critical temperature, the grain–grain interaction becomes weak as the transverse component of the particle/cluster moment is larger than the longitudinal one and the system reaches saturation even at low field. These observed variations in the field-induced anisotropy are analysed by incorporating the moment distribution of particles in Tarapov’s theory (J. Magn. Magn. Mater. 39, 51 (1983)).  相似文献   

20.
In this paper, we investigate the electronic structure of both armchair and zigzag α-graphyne nanoribbons. We use a simple tight binding model to study the variation of the electronic band gap in α-graphyne nanoribbon. The effects of ribbon width, transverse electric field and edge shape on the electronic structure have been studied. Our results show that in the absence of external electric field, zigzag α-graphyne nanoribbons are semimetal and the electronic band gap in armchair α-graphyne nanoribbon oscillates and decreases with ribbon's width. By applying an external electric field the band gap in the electronic structure of zigzag α-graphyne nanoribbon opens and oscillates with ribbon width and electric field magnitude. Also the band gap of armchair α-graphyne nanoribbon decreases in low electric field, but it has an oscillatory growth behavior for high strength of external electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号