首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing an equal number of positively and negatively charged monomers, are studied using molecular dynamics simulations. Keeping the length of the chains fixed, the dependences of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and the dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.  相似文献   

2.
QU Li-Jian 《理论物理通讯》2012,57(6):1091-1094
Scaling theory of charged cylindrical polyelectrolyte brushes is developed. The dependence of brush thickness on the grafting density, charge fraction, and chain length is analyzed. A full phase diagram is established. Characteristics and boundaries between different regimes of cylindrical polyelectrolyte brushes are summarized. Special attentions are paid to electrostatic interaction induced stiffening and counterion condensation effects. If the Bjerrum length of the solution is larger than the Kuhn length of the polyelectrolyte chains, counterion condensation occurs in the strongly charged polyelectrolyte brushes. On the contrary, the electrostatic interaction stretches the strongly charged grafted polyelectrolyte chains to their contour length.  相似文献   

3.
We use molecular dynamics simulations to investigate centipede-like polymers with stiff charged side chains, end-grafted to a planar wall. The effect of the grafting density and the Bjerrum length on the conformational behaviour of the brush is examined in detail. In addition, we make a comparison of centipede-like polyelectrolyte (CPE) brushes with neutral centipede-like polymer (NCP) and linear polyelectrolyte (LPE) brushes. At weak electrostatic interaction, the main chains of the CPE chains adopt a strongly stretched conformation, and the monomer density profiles of side chains exhibit a clear oscillatory behaviour. With increasing Bjerrum length, the CPE brush undergoes a collapse transition. Compared to the CPE brushes, the counterion condensation effect is stronger for the LPE brushes, regardless of whether the electrostatic interaction is weak or strong and of whether the grafting density is low or high. Additionally, it is shown that the architecture of the grafted chains makes a weak contribution to the counterion condensation at strong electrostatic interaction. We also find that the electrostatic repulsion between charged side chains can enhance the stiffness of the main chains and thus limit the range of movement of the free-end monomers.  相似文献   

4.
We investigate polyelectrolyte brushes in the osmotic regime using both theoretical analysis and molecular dynamics simulation techniques. In the simulations at moderate Bjerrum length, we observe that the brush height varies weakly with grafting density, in contrast to the accepted scaling law, which predicts a brush thickness independent of the grafting density. We show that such behavior can be explained by considering lateral electrostatic effects (within the non-linear Poisson-Boltzmann theory) combined with the coupling between lateral and longitudinal degrees of freedom due to the conserved polymer volume (which are neglected in scaling arguments). We also take the non-linear elasticity of polyelectrolyte chains into consideration, which makes significant effects as chains are almost fully stretched in the osmotic regime. It is shown that all these factors lead to a non-monotonic behavior for the brush height as a function of the grafting density. At large grafting densities, the brush height increases with increasing the grafting density due to the volume constraint. At small grafting densities, we obtain a re-stretching of the chains for decreasing grafting density, which is caused by lateral electrostatic contributions and is controlled by the counterion-condensation process around polyelectrolyte chains. These results are obtained assuming all counterions to be trapped within the brush, which is valid for sufficiently long chains of large charge fraction.Received: 14 May 2003, Published online: 11 November 2003PACS: 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 36.20.-r Macromolecules and polymer molecules - 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc.  相似文献   

5.
ABSTRACT

Understanding the force between charged surfaces immersed in an electrolyte solution is a classic problem in soft matter and liquid-state theory. Recent experiments showed that the force decays exponentially but the characteristic decay length in a concentrated electrolyte is significantly larger than what liquid-state theories predict based on analysing correlation functions in the bulk electrolyte. Inspired by the classical Casimir effect, we consider an additional mechanism for force generation, namely the confinement of density fluctuations in the electrolyte by the walls. We show analytically within the random phase approximation, which assumes the ions to be point charges, that this fluctuation-induced force is attractive and also decays exponentially, albeit with a decay length that is half of the bulk correlation length. These predictions change dramatically when excluded volume effects are accounted for within the mean spherical approximation. At high ion concentrations the Casimir force is found to be exponentially damped oscillatory as a function of the distance between the confining surfaces. Our analysis does not resolve the riddle of the anomalously long screening length observed in experiments, but suggests that the Casimir force due to mode restriction in density fluctuations could be an hitherto under-appreciated source of surface–surface interaction.  相似文献   

6.
We report on slow light propagation induced by the coherent population oscillation in an erbium-doped optical fiber (EDOF). The slowdown of group velocity of light is demonstrated in a solid-state material at room temperature. We observe a maximum fractional delay of 0.129 and a maximum delay of 8.75 ms corresponding to a group velocity as low as 228.57 m/s in a sinusoid-like modulated waveform. We study in details the influences of the erbium ion density and the length of fiber on the fractional delay and the slow light propagation. The data show that the fractional delay can be increased using the fiber with high erbium ions density or long interaction length.  相似文献   

7.
Magneto-acoustic waves generated by fluctuations in the Hall parameter, the electric conductivity and the stream velocity are theoretically investigated in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both magnetic field and stream velocity. The investigations hold for seeded rare gas plasmas at any degree of seed ionization but are resticted to waves propagating in parallel or antiparallel direction to the current density vector and in parallel or antiparallel direction to the stream velocity vector and to wave lengths which are small in comparsion to the interaction length which occurs as a characteristic wave length. The influence of these waves on the mean current density and the mean Hall field intensity is calculated in case of small amplitudes and low degree of seed ionization up to second order terms. Omitting Ohmic heating the dispersion equation can be solved exactly. A phase shift exists between the fluctuations in gas density and gas velocity. The phase velocity and the amplification rate depend on the wave length. Typical results are represented in a diagram. For both types of waves the phase velocity slightly rises with increasing wave length, while the amplification rate decreases. Waves propagating in opposite direction to the current density vector are amplified, if the electron velocity exceeds a critical value. They reduce the mean current density and the mean Hall field intensity. Waves propagating in opposite direction to the stream velocity vector are also amplified except for very high degrees of seed ionization. The threshold current density is greater than that for the waves of the first type approximately by the Hall parameter as factor. At extremely high degree of seed ionization the phase velocity is directed opposite to the direction occuring at weakly ionized seed. Waves of the second type decrease the mean current density, but increase the mean Hall field intensity.  相似文献   

8.
Electrical transport properties of a series of NaBF4 salt-doped PVC–polyethylene oxide blend polymer electrolytes are studied using impedance spectroscopy. X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry are implemented to characterize the structural properties of the electrolytes. The characterization data clearly indicate that the interaction between the dopant salt and the polymer host substantially influences the overall crystallinity of the electrolytes. Experimental frequency-dependent complex conductivity and loss tangent data are analyzed using a physical model to extract separately the mobile ion concentration and ion mobility of the charge carriers and the type of their thermal activation. The average hopping length of free ions, which essentially controls the macroscopic ion transport within the electrolytes, is found to be strongly correlated to the network structure of the electrolytes. Both the dc conductivity and free ion mobility are observed to be strongly coupled with the segmental dynamics of blend polymer host over the entire range of ion content studied.  相似文献   

9.
We investigate the interaction of a laser-cooled trapped ion (Ba+ or Rb+) with an optically confined ??Rb Bose-Einstein condensate. The system features interesting dynamics of the ion and the atom cloud as determined by their collisions and their motion in their respective traps. Elastic as well as inelastic processes are observed and their respective cross sections are determined. We demonstrate that a single ion can be used to probe the density profile of an ultracold atom cloud.  相似文献   

10.
Ion acceleration by the interaction of an ultraintense short-pulse laser with an underdense-plasma has been studied at intensities up to 3 x 10(20) W/cm(2). Helium ions having a maximum energy of 13.2+/-1.0 MeV were measured at an angle of 100 degrees from the laser propagation direction. The maximum ion energy scaled with plasma density as n(0.70+/-0.05)(e). Two-dimensional particle-in-cell simulations suggest that multiple collisionless shocks are formed at high density. The interaction of shocks is responsible for the observed plateau structure in the ion spectrum and leads to an enhanced ion acceleration beyond that possible by the ponderomotive potential of the laser alone.  相似文献   

11.
The interactions between surfaces modified with grafted polymers is studied theoretically. The aim of this work is to find polymer surface modifications that will result in localized attractive interactions between the surfaces. The practical motivation of the work is to find means to control the distance between bilayers and solid supports in supported membranes. Two theoretical approaches are used, the analytical treatment of Alexander and a molecular theory. It is found that grafting each end of the polymer to each surface results in an interaction with a well defined minimum. The location of the minima is found to be very close to the thickness of the polymer layer when the chains are grafted to only one of the surfaces. The predictions of the analytical theory are in excellent agreement with the molecular approach in this case. It is found that increasing the surface coverage increases the strength of the interaction. However, increasing the polymer chain length at fixed surface coverage results in a decrease of the free energy cost associated with separating the surfaces from their optimal distance. For the cases in which grafting to both surfaces is not possible, the molecular theory is used to study the effect of functionalizing segments of the chain to achieve an attractive well. It is found that by functionalizing the free end-groups of the polymers with segments attracted to the membrane, the range of the attractive interaction is significantly larger than the thickness of the unperturbed layer. Functionlizing the middle segments of the chains results in a shorter range attraction but of the same strength as in the end-functionalized layers. The optimal polymer modification is found to be such that the functionlized groups are attracted to the bare surface but are not attracted to the grafting surface. The relevance of the results to the design of experimental surface modifiers is discussed.  相似文献   

12.
The spectral remote sensing (SRS) method is applied to the combustion gas with radiation/turbulence interaction to invert the temperature and concentration profiles. The flame is made and controlled to be optically thin per each fluctuation length so that spatially fluctuating gas layer can be treated equivalently as timewisely fluctuating one sharing identical expression in the radiative transfer equation. Then, the spectral intensity, temperature and concentration distributions are measured for the inversion and as the reference solutions. From the inversion results, we find that SRS can successfully invert the coupled temperature/concentration fluctuation amplitudes and mean values. For the two cases of experiment, inverted values are in good agreement with measured ones. However, SRS cannot find the detailed local fluctuation parameter such as pattern or phase, etc. as far as they do not affect the resulting radiative intensity. So, it is deduced that the pattern or phase is not so influential, whereas the mean value and the fluctuation amplitude of temperature/concentration profile are important parameters for the radiative intensity in the case of the optically thin condition. Further, the radiation/turbulence interaction is verified to play an important role in the radiation.  相似文献   

13.
We present an analytical self-consistent-field (SCF) theory for a neutral polymer brush (a layer of long polymer chains end-grafted to a surface) with annealed excluded volume interactions between the monomer units. This model mimics the reversible adsorption of solute molecules or aggregates, such as small globular proteins or surfactant micelles, on the grafted chains. The equilibrium structural properties of the brush (the brush thickness, the monomer density profile, the distribution of the end segments of the grafted chains) as well as the overall adsorbed amount and the adsorbate density profile are analyzed as a function of the grafting density, the excluded volume parameters and the chemical potential (the concentration) of the adsorbate in the solution. We demonstrate that, when the grafting density is varied, the overall adsorbed amount always exhibits a maximum, whereas the root-mean-square brush thickness either increases monotonically or passes through a (local) minimum. At high grafting densities the chains are loaded by adsorbed aggregates preferentially in the distal region of the brush, whereas in the region proximal to the grafting surface depletion of aggregates occurs and the polymer brush retains an unperturbed structure. Depending on the relative strength of the excluded volume interactions between unloaded and loaded monomers both the degree of loading of the chains and the polymer density profile are either continuous or they exhibit a discontinuity as a function of the distance from the grafting surface. In the latter case intrinsic phase separation occurs in the brush: the dense phase consists of unloaded and weakly extended chains and occupies the region proximal to the surface, whereas a more dilute phase consisting of highly loaded and strongly extended chains forms the periphery of the brush. Received 26 November 1998 and Received in final form 2 April 1999  相似文献   

14.
In this work we evaluate the interaction of high intense laser beam with a steepened density profile. During laser interaction with underdense plasma by freely expanding plasma regime, modification of density profile is possible. In this paper we have investigated the ultra short laser pulse interaction with nonisothermal and collisionless plasma. We consider self–focusing as an effective nonlinear phenomenon that tends to increase when the laser power is more than critical rate. By leading the expanded plasma to a preferred location near to critical density, laser reflection is obtained, so the density profile will be locally steepened. The electromagnetic fields are evaluated in this new profile. We show the amplitude and period of electrical field oscillation are increased by reducing the steepened scale length. Also our numerical results identify that by reducing the steepened scale length, the electrical field is increased to wave breaking threshold limit. This high gradient electrical field causes the effective beam loading during the wave breaking phenomenon. The wave breaking can be the initial point for other acceleration regime as cavity or channel guiding regime. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Polymeric self-consistent field theory is used to investigate microstructures and interphase properties of diblock copolymers grafted onto solid surfaces in a homopolymer melt. The calculations show that the grafted diblock copolymers can self-assemble into hemispherical microstructures at low grafting densities of the diblock copolymers. The morphology transforms into hemicylinder-like and sandwich-like lamellar microstructures with an increase in the chain-grafting density. The effective thickness of the grafted block layer and the interphase width between the homopolymer melt and the grafted copolymers strongly depend on the physicochemical parameters of the system, such as the composition of the grafted copolymer, the chemical incompatibility between the different components, the length ratio of grafted copolymer to homopolymer, and the grafting density of the diblock copolymers. In addition, the above computational results of microphase-separated structures and interphase properties are qualitatively compared with our previous experimental observations. The comparison indicates that our theoretical results not only reproduce the general feature of the experimental observations, but also elucidate the internal structural information and complement the findings in the region of high grafting densities of diblock copolymers.  相似文献   

16.
Summary Simulation results as well as experimental data indicate that full stretching of flexible polyelectrolytes will not occur under experimentally realizable conditions. Using density-dependent swelling exponents ν(ϕ) as suggested by Stevens and Kremer from the results of a MD simulation study, we present an Alexander-de Gennes-like scaling picture for the behaviour of charged brushes. The brush height is found to become dependent on the grafting density as soon as internal stretching is incomplete. For a particular anchoring technique used in experimental studies the grafting density itself becomes dependent on the chain length. The resulting modified overall chain length dependence of the brush height is discussed. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

17.
Micron-sized silica gel particles were first surface-modified with coupling agent, γ-methacryloylpropyl trimethoxysilane (MPS), and the polymerizable double bonds were introduced onto the surfaces of silica gel particles, forming the modified particles MPS-SiO2. Subsequently, N,N-dimethylaminoethyl methacrylate (DMAEMA) was graft-polymerized on the surfaces of particles MPS-SiO2 in the manner of “grafting through”, resulting in the grafted particles PDMAEMA/SiO2. The grafted particles PDMAEMA/SiO2 were fully characterized with several means. The graft polymerization process of DMAEMA on particles MPS-SiO2 was studied in detail, and the optimal reaction conditions were determined. Thereafter, the adsorption properties of the grafted particles PDMAEMA/SiO2 for chromate anion and Cu2+ ion were preliminarily examined respectively. The experimental results indicate that the PDMAEMA grafting degree on PDMAEMA/SiO2 particles is limited because an enwinding polymer layer as a kinetic barrier on the surfaces of silica gel particles will be formed during the graft polymerization, and blocks the graft polymerization. In order to enhance PDMAEMA grafting degree, reaction time and temperature, and the used amount of initiator as well as the monomer concentration should be effectively controlled. The preliminary adsorption tests show that the grafted particles PDMAEMA/SiO2 are multi-functional. They possess very strong adsorption ability for CrO42− anion by right of strong electrostatic interaction, and have also adsorption action towards heavy metal ion by dint of complexing action.  相似文献   

18.
Among other parameters which influence various processes associated with ion bombardment of solids (such as sputtering, secondary electron emission, ion scattering and so on) there is “ion dose”. As the ion dose the product of ion current density (or total ion current) and time of irradiation is usually accepted. However, this definition is valid in such cases only when the time interval required for the actual experiment (or for the actual measurement) is small as compared with a certain time interval (relaxation time) which may be approximately determined as the bombarded ion penetration depth divided by the velocity of the irradiated surface motion due to target sputtering. The examination of the situations which take place in typical ion bombardment experiments (ion current densities of about 0.01–1.00 ma/cm2, sputtering ratios of about 1–10 at/ion) shows that the relaxation time turns out to be of the order of some minutes to some seconds depending strongly, in particular, on the crystalline target orientation with respect to the ion beam direction. When the time interval required for the performing of the experiment exceeds considerably the relaxation time the critical ion dose must be determined as the product of ion current density and the relaxation time. In fact, the damaged layer of the irradiated target is continuously sputtered and this process prevents the accumulation of damage. Because the relaxation time is inversely proportional to the bombarding ion current density in this case the critical ion dose proves to be independent of ion current density. This peculiar fact must be taken into account in particular when the dependence of various characteristics of the ion-solid interaction process upon bombarded ion current density are analysed. When the time interval during which the measurements are performed is comparable with the relaxation time one can expect that transient characteristics must be observed. In particular they must be observed when an abrupt change of irradiated crystalline target orientation with respect to the bombarded ion beam is performed.  相似文献   

19.
赵清  常青  杨金龙  刘俊  胡胜亮 《发光学报》2014,35(3):387-392
基于铜离子与碳点的荧光猝灭作用,建立了用碳点作为荧光探针来检测铜离子的新方法。该方法将碳点还原后再嫁接于海藻酸钙,从而得到一种新型的含还原碳点的海藻酸钙薄膜荧光探针。用荧光分光光度计和紫外-可见分光光度计对探针的荧光特性以及探针与金属离子的相互作用进行了研究。研究结果表明:改性后的荧光探针具有很高的荧光强度,因此可以根据探针荧光强度的变化实现对铜离子的检测,并通过乙二胺四乙酸二钠(EDTA)的作用实现对铜离子的重复检测。铜离子浓度在5×10-6~100×10-6 mol·L-1范围内与该荧光探针的荧光猝灭强度呈良好的线性关系。该方法不仅可以对铜离子检测,更实现了对碳点的固载,该技术有望实现荧光探针的回收再利用。  相似文献   

20.
何素贞  候格  苏婵菲  吴晨旭 《中国物理 B》2013,22(1):16101-016101
The static and dynamic properties of a system of end-grafted flexible ring polymer chains grafted to a flat substrate and exposed to a good solvent are studied by using a molecular dynamics method. The monomers are described by a coarse-grained bead-spring model. Varying the grafting density ρ and the degree of polymerization or chain length N, we obtain the density profiles of monomers, study the structural properties of the chain (radius of gyration, bond orientational parameters, etc.), and also present the dynamic characteristics such as chain energy and bond force. Compared with a linear polymer brush, the ring polymer brush exhibits different static and dynamic properties for moderate or short chain length, while it behaves like linear polymer brush in the regime of long chain length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号