首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is proposed for constructing an exact ground-state wave function of a two-dimensional model with spin 1/2. The basis of the method is to represent the wave function by a product of fourth-rank spinors associated with the nodes of a lattice and the metric spinors corresponding to bonds between nearest neighbor nodes. The function so constructed is an exact wave function of a 14-parameter model. The special case of this model depending on one parameter is analyzed in detail. The ground state is always a nondegenerate singlet, and the spin correlation functions decay exponentially with distance. The method can be generalized for models with spin 1/2 to other types of lattices. Zh. éksp. Teor. Fiz. 115, 249–267 (January 1999)  相似文献   

2.
The Monte Carlo method has been used to study phase transitions and the structure of the ground state of the antiferromagnetic Ising model on a body-centered cubic lattice taking into account the interactions of nearest and next nearest neighbors. All possible magnetic structures of the ground state have been obtained for the first time as a function of the ratio of exchange interactions r. It is shown that six different orderings in the ground state are possible in the system as a function of the r value. The phase diagram of the dependence of the critical temperature on the interaction of the next nearest neighbors is constructed. For the first time, a narrow region (2/3 < r ≤ 0.75) is found in the diagram where the transition from the antiferromagnetic phase to the paramagnetic phase occurs as a first-order phase transition. It is shown that the competition between exchange interactions at the value r = 2/3 does not lead to the frustration and degeneracy of the ground state.  相似文献   

3.
We study the spin ladder model with interactions between spins on neighboring rungs. The model Hamiltonian with the exact singlet ground state degenerated with ferromagnetic state is obtained. The singlet ground state wave function has a special recurrent form and depends on two parameters. Spin correlations in the singlet ground state show double-spiral structure with period of spirals equals to the system size. For special values of parameters they have exponential decay. The spectrum of the model is gapless and there are asymptotically degenerated excited states for special values of parameters in the thermodynamic limit. Received 7 May 1999  相似文献   

4.
The Hubbard model is investigated for a halffilled honeycomb lattice, using a variational method. Two trial wave functions are introduced, the Gutzwiller wave function, well suited for describing the “metallic” phase at small U and a complementary wave function for the insulating regime at large values of U. The comparison of the two variational ground states at the mean-field level yields a Mott transition at U c /t ≈ 5:3. In addition, a variational Monte Carlo calculation is performed in order to locate the instability of the “metallic” wave function with respect to antiferromagnetism. The critical value U m/t ≈ 3:7 obtained in this way is considered to be a lower bound for the true critical point for antiferromagnetism, whereas there are good arguments that the mean-field value U c/t ≈ 5:3 represents an upper bound for the Mott transition. Therefore the “metal”- insulator transition for the honeycomb lattice may indeed be simultaneously driven by the antiferromagnetic instability and the Mott phenomenon.  相似文献   

5.
We study Hartree-Fock, Gutzwiller, Baeriswyl, and combined Gutzwiller-Baeriswyl wave functions for the exactly solvable one-dimensional 1/r-Hubbard model. We find that none of these variational wave functions is able to correctly reproduce the physics of the metal-to-insulator transition which occurs in the model for halffilled bands when the interaction strength equals the bandwidth. The many-particle problem to calculate the variational ground state energy for the Baeriswyl and combined Gutzwiller-Baeriswyl wave function is exactly solved for the 1/r-Hubbard model. The latter wave function becomes exact both for small and large interaction strength, but it incorrectly predicts the metal-to-insulator transition to happen at infinitely strong interactions. It is thus seen that neither Hartree-Fock nor an energetically excellent Jastrow-type wave function yield a reliable prediction on the zero temperature phase transition in the one-dimensional 1/r-Hubbard chain.  相似文献   

6.
An antisymmetrized product of periodic density modulated one particle functions is investigated as a trial wave function for different local twobody forces. The model is compared with a BCS ground state. For some potentials a lower ground state energy has been found for the density modulated state. In lowest order cluster expansion forces with a hard core have been examined. A liquid-solid transition is indicated for3He at a density near the experimental value.  相似文献   

7.
We study the ground-state and thermal entanglement in the mixed-spin (S,s)=(1,1/2) Heisenberg chain with single-ion anisotropy D using exact diagonalization of small clusters. In this system, a quantum phase transition is revealed to occur at the value D=0, which is the bifurcation point for the global ground state; that is, when the single-ion anisotropy energy is positive, the ground state is unique, whereas when it is negative, the ground state becomes doubly degenerate and the system has the ferrimagnetic long-range order. Using the negativity as a measure of entanglement, we find that a pronounced dip in this quantity, taking place just at the bifurcation point, serves to signal the quantum phase transition. Moreover, we show that the single-ion anisotropy helps to improve the characteristic temperatures above which the quantum behavior disappears.  相似文献   

8.
The low energy and low temperature behavior of a few finite size Kagome clusters, including mixed spin systems of S=1/2 and S=1, with the nearest neighbor Heisenberg antiferromagnetic model is studied under the influence of out-of-plane Dzyaloshinskii?Moriya interactions (DMI) within the exact diagonalization formalism. The ground state of all the finite size systems is found to be present in the lowest spin sector with a finite gap to the lowest magnetic excitation irrespective of the strength of out-of-plane DMI. The energy level structures within the non-magnetic ground state and the lowest magnetic state have been studied for all the systems as a function of DMI. The characteristic signature of such low-lying non-magnetic excitations is reflected in the low temperature behavior of the specific heat. It is also found that the ground state chiral structure (characterized by the vector chiral order of the system) in the xy-plane shows sharp changes as a function of out-of-plane DMI at level crossing or avoided crossing regions. The in-plane spin ordering for each system is also studied with the estimation of static structure factor as a response to the varying strength of DMI.  相似文献   

9.
A rearrangement of the ground state of a Wannier-Mott exciton upon an increase in its momentum is considered. The phase diagram of the electron and the hole experiencing the Coulomb interaction on the magnetic momentum-external magnetic field plane is investigated. A jumplike exciton-magnetoexciton “phase” transition is observed upon an increase in the momentum in fields B weaker than a certain value B<B tr1. As momentum P increases above a certain critical value P tr(B), the ground state of the system changes from the hydrogen-like state polarized by the Lorentz force to the magnetoexciton state in which the average distance 〈 r〉 between the electron and the hole increases jumpwise in the transverse direction relative to the field. As the exciton momentum increases, its wave function is extended along the magnetic field, acquiring the shape of a strongly prolate ellipsoid. It is interesting that the momentum of the transition tends to a finite value P 0>0 even for B→0. At the point of transition, the exciton energy-momentum relation changes jumpwise from a quadratic law to a relation virtually independent of the momentum. For B<B tr1, the exciton-magnetoexciton transition becomes blurred.  相似文献   

10.
The theory of magnetization in a longitudinal magnetic field is developed for an easy-plane multisublattice antiferromagnet with a singlet ground state and a strong single-ion anisotropy exceeding the magnitude of exchange interaction. The magnetic-field-induced phase transition from the singlet (magnetically dis-ordered) state to a multisublattice antiferromagnetic state represents a displacive magnetic phase transition. At T=0, this transition proceeds continuously and belongs to second-order phase transitions, while at T ≠0, the behavior changes to jumplike and the process becomes the first-order phase transition.  相似文献   

11.
The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with δ-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Many interesting features appear in the system. For example, the wave function has the SU(2|2) supersymmetry. It is also found that the ground state of the system is partial polarized, where the fermions form a spin singlet state and the bosons are totally polarized. From the solution of Bethe ansatz equations, it is shown that all the momentum, spin and isospin rapidities at the ground state are real if the interactions between the particles are repulsive; while the fermions form two-particle bounded states and the bosons form one large bound state, which means the bosons condensed at the zero momentum point, if the interactions are attractive. The charge, spin and isospin excitations are discussed in detail. The thermodynamic Bethe ansatz equations are also derived and their solutions at some special cases are obtained analytically.  相似文献   

12.
A recent paper of Capone et al. has studied an extended Hubbard model, in which local orbital degrees of freedom allow an even integer occupation at each site. A strong local repulsion U triggers a metal-insulator transition. Within a DMFT numerical analysis they show that when the ground state is a singlet a pocket of s-wave superconductivity appears in the vicinity of the Mott transition, with a strongly enhanced superconducting gap. A qualitative understanding of their result is proposed, and suggestions are made of possible systems in which this beautiful effect might be searched.  相似文献   

13.
In this paper a variational method for the ground state energy approximation of theE−b 1,b 2 Jahn-Teller system is presented. This method is based on the choice of a suitable variational ground state wave function. This trial wave function — a correlated squeezed state — is used to account for the correlation and anharmonicity of the interaction between the two vibrational modes; the anharmonicity of both modes is taken into account by the squeeze effects of these modes. The ground state of mode 1 in this trial wave function is considered as a linear combination of the two displaced harmonic oscillators. The ground state energies for the linearE - e Jahn-Teller system calculated by this method are not only in good agreement with the exact diagonalization results, but they are also better than those from the previous analytical studies. Another conclusion which results from the presented model is the following one: the squeezing effect of mode 1 for the linearE - e Jahn-Teller system is substantially smaller, in contrast with the results which are presented in the previous analytical studies.  相似文献   

14.
The ground state magnetic dipole transition width from the 1+ state in 88Sr at 3.49 MeV is calculated using a reasonable wave function for the ground state and a wave function for the 1+ state calculated by diagonalizing one particle-one hole shell model 1+ states starting with a basis of reasonable dimensions. The calculated value of the width is 0.17 eV. The measured value is 0.15 ± 0.024 eV.  相似文献   

15.
On the base of exact analytical solutions for maximum eigenvalue of Kramers–Wannier transfer matrix the phenomena of frustrations appearance and suppression of phase transition or, on the contrary, the phase transition appearance and suppression of frustrations are studied on the base of exact analytical solutions for 1D Ising model, 3-state, and 4-state standard Potts models with allowance for the interactions between nearest J and next-nearest neighbors J′, for 6-state and 8-state modified Potts models with allowance for the interaction between only nearest neighbors J. In all the models investigated we obtained exact numbers and values of frustrating fields depending, in particular, on mutual orientation of the field and spin directions.  相似文献   

16.
An exactly soluble class of model U(N) lattice gauge theories is considered. The ground state is discussed as a separable N-fermion problem solved by mathieu functions. Some exact correlation functions are presented. The N = ∞ limit exhibits a third order phase transition demarcating the strong and weak phases at (g2N)?1 ≈ 0.55.  相似文献   

17.
The ground state and the lowest excited states of the spin 1/2-Heisenberg model are investigated by exact diagonalization and variational Monte Carlo techniques. Our trial state represents a generalization of a wave function introduced by Hulthen, Kasteleijn and Marshall. The long range character of the spin-correlation function is in excellent agreement with exact diagonalization and also with recent neutron scattering results for La2CuO4. The asymptotic behavior of the spin-correlation function is found to differ from spin-wave theory. From the exact (N<=20 spins) and variational (N<=400) ground state energies we determine as asymptotic values 1.3025 and 1.288, respectively. We calculate the dispersion for the spin-wave excitations and identify an excited triplet which becomes degenerate with the ground state in the thermodynamic limit. This triplet state allows spontaneous symmetry breaking to occur atT=0 K. Quantum fluctuations reduce the sublattice magnetization to an effective value of 0.195 (3) as compared to the Néel-state value of 1/2.  相似文献   

18.
We investigate ground state configurations for a general finite number N of particles of the Heitmann-Radin sticky disc pair potential model in two dimensions. Exact energy minimizers are shown to exhibit large microscopic fluctuations about the asymptotic Wulff shape which is a regular hexagon: There are arbitrarily large N with ground state configurations deviating from the nearest regular hexagon by a number of ~N 3/4 particles. We also prove that for any N and any ground state configuration this deviation is bounded above by ~N 3/4. As a consequence we obtain an exact scaling law for the fluctuations about the asymptotic Wulff shape. In particular, our results give a sharp rate of convergence to the limiting Wulff shape.  相似文献   

19.
We present the exact solution of the simplified Hubbard model in which only one kind of electrons can hop and this quantum mechanical hopping of electrons is assumed to be unconstrained. It is shown that the model still behaves nontrivially, although it no longer depends on the lattice structure and the dimensionality of the system. For this case we find: (i) a gap in the ground state energy always exists at the half-filled band point (n=1), (ii) a preferred magnetic state atn=1 and largeU is a total spin singlet, (iii)U-dependence of the ground state energy has qualitatively the same form as one of the conventional Hubbard model with the (t 2/U)-behavior at largeU. A phase diagram of the model is discussed.  相似文献   

20.
《Nuclear Physics B》1996,474(3):678-714
We formulate in terms of the quantum inverse scattering method the exact solution of a spl(2|1) invariant vertex model recently introduced in the literature. The corresponding transfer matrix is diagonalized by using the algebraic (nested) Bethe ansatz approach. The ground state structure is investigated and we argue that a Pokrovsky-Talapov transition is favored for a certain value of the 4-dimensional spl(2|1) parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号