首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
X-ray photoelectron spectroscopy (XPS) was used in order to investigate the correlation between the surface chemistry and the atmospheric corrosion of AZ31, AZ80 and AZ91D magnesium alloys exposed to 98% relative humidity at 50 °C. Commercially pure magnesium, used as the reference material, revealed MgO, Mg(OH)2 and tracers of magnesium carbonate in the air-formed film. For the AZ80 and AZ91D alloys, the amount of magnesium carbonate formed on the surface reached similar values to those of MgO and Mg(OH)2. A linear relation between the amount of magnesium carbonate formed on the surface and the subsequent corrosion behaviour in the humid environment was found. The AZ80 alloy revealed the highest amount of magnesium carbonate in the air-formed film and the highest atmospheric corrosion resistance, even higher than the AZ91D alloy, indicating that aluminium distribution in the alloy microstructure influenced the amount of magnesium carbonate formed.  相似文献   

2.
The molybdenum/lanthanum-based (Mo/La) composite conversion coating on AZ31 magnesium alloy was investigated and the corrosion resistance was evaluated as well. The morphology, composition and corrosion resistance of the coating were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis, respectively. The results revealed that the conversion coating consisted of spherical nodular particles, which was mainly composed of Mo, La, O and Mg. After conversion treatment the corrosion potential shifts about 500 mV positively, and the corrosion current density decreases two orders of magnitude. The corrosion resistance of AZ31 alloy is remarkably improved by Mo/La composite conversion coating.  相似文献   

3.
Ceramic coatings on the surfaces of Mg-9Al-1Zn (AZ91) magnesium alloy and Mg-9Al-1Zn-1Nd magnesium alloy (AZ91 magnesium alloy modified by neodymium, named as AZ91Nd in this paper) are synthesized in aluminate electrolyte by plasma electrolytic oxidation (PEO) process, respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses show the PEO coating on the Mg-9Al-1Zn-1Nd alloy comprises not only MgO and Al2O3, which are found in the coating on the AZ91 alloy, but also a trace amount of Nd2O3. Microstructure observations indicate the addition of Nd can decrease the sizes of β phases and form Al2Nd intermetallics in the AZ91 alloy. The fine β phases can effectively restrain the formation of unclosed-holes and greatly decrease the sizes of pores in the coating during the PEO process. In addition, the Al2Nd intermetallics can be completely covered due to the lateral growth of the PEO coatings formed on the α and β phases. As a result, the coating on the AZ91Nd alloy possesses a dense microstructure compared with that on the AZ91 alloy. The following corrosion tests indicate the corrosion resistance of the PEO coating on the AZ91Nd alloy is evidently higher than that of the PEO coating on the AZ91 alloy.  相似文献   

4.
In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.  相似文献   

5.
The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH)2 and MgF2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm−3 of F is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.  相似文献   

6.
The Ni-P/Ni-B duplex coatings were deposited on AZ91D magnesium alloy by electroless plating process and their structure, morphology, microhardness and corrosion resistance were evaluated. The duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with Ni-P as the inner layer. The coatings were amorphous in as-plated condition and crystallized and produced nickel borides upon heat-treatment. SEM observations showed that the duplex interface on the magnesium alloy was uniform and the compatibility between the layers was good. The Ni-P/Ni-B coatings microhardness and corrosion resistance of having Ni-B coating as the outer layer was higher than Ni-P coatings. The Ni-P/Ni-B duplex coatings on AZ91D magnesium alloy with high hardness and good corrosion resistance properties would expand their scope of applications.  相似文献   

7.
Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy   总被引:6,自引:0,他引:6  
Phytic acid (PA) conversion coating on AZ61 magnesium alloy was prepared by the method of deposition. The influences of pH, time and PA concentration on the formation process, microstructure and properties of the conversion coating were investigated. Scanning electron microscopy (SEM) was used to observe the microstructure. The chemical nature of conversion coating was investigated by energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The corrosion resistance was examined by means of potentiodynamic polarization method. The adhesive ability was tested by score experiments. The results showed that the growth and microstructure of the conversion coatings were all obviously affected by pH, time and PA concentration. In 0.5 mg/ml PA solution with a pH of 5, an optimization conversion coating formed after 20 min immersion time by deposition of PA on AZ61 magnesium alloy surface through chelating with Al3+. It made the corrosion potential Ecorr of sample shifted positively about 171 mV than that of the untreated sample, and the adhesive ability reached to Grade 1 (in accordance with GB/T 9286).  相似文献   

8.
A composite ceramic coating containing Al2O3–ZrO2–Y2O3 was successfully prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) technique in an alkaline aluminate electrolyte. The morphology, elemental and phase composition, corrosion behavior and thermal stability of the uncoated and coated samples were studied by environmental scanning electron microscopy (ESEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD), electrochemical corrosion test, high temperature oxidation test and thermal shock test. The results showed that the composite ceramic coating was composed of Al2O3, c-ZrO2, t-ZrO2, Y2O3 and some magnesium compounds, such as MgO, MgF2 and MgAl2O4. After PEO treatment, the corrosion potential of AZ91D alloy was increased and the corrosion current density was significantly reduced. Besides, the coated magnesium alloys also showed excellent high temperature oxidation resistance and thermal shock resistance at 500 °C environment.  相似文献   

9.
Characterization of ceramic PVD thin films on AZ31 magnesium alloys   总被引:1,自引:0,他引:1  
Ceramic thin films have been widely used to protect the metal substrate as coatings in the past years. In order to improve the poor corrosion resistance of AZ31 magnesium alloy, the study in this paper used the electron beam evaporation method to prepare ceramic PVD films on its surface with TiO2 and Al2O3 as donors, respectively. Atomic force microscopy (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), Auger electron spectroscopy (AES) and X-ray diffraction (XRD) were used to investigate the surface morphology, composition and microstructure of the thin films. Both films deposited on AZ31 took on compact top surface morphologies and grew as amorphous structures on substrate. AES test not only showed that films compositions deviated the standard stoichiometric ratios, but also found that element Mg diffused into films and existed as magnesium oxide in the TiOx film as well as the AlOx film. In the electrochemical corrosion test, the AlOx coating on AZ31 exhibited the largest electrochemical impedance in a 3.5% NaCl solution. But it did not show better corrosion resistance than others for the poorer adhesion. Even if its thickness was small, the TiOx coating on AZ31 exhibited the best corrosion resistance in this study. According to the observation and analysis, the damage of these films on AZ31 in aggressive solutions was mainly due to the existence of pores, microcracks, vacancies and poor adhesion between coating and substrate.  相似文献   

10.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

11.
Ceramic coatings oxidized for different time periods were prepared to characterize the plasma electrolytic oxidation (PEO) process of AZ91D magnesium alloy. The coatings were analyzed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscope and potentiodynamic polarization measurement. The results show that the PEO coatings perform different growth behaviors at different PEO stages, and different morphologies are exhibited on α- and β-phase of Mg substrate. The corrosion resistance measurement predicates that within the first 30 min oxidation, coating oxidized for 20 min is the best corrosion resistant.  相似文献   

12.
Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy   总被引:1,自引:0,他引:1  
Ternary Ni-W-P alloy coating was deposited directly on AZ91D magnesium alloy by using an alkaline-citrate-based baths. Nickel sulfate and sodium tungstate were used as metal ion sources, respectively, and sodium hypophosphite was used as a reducing agent. The pH value of the electroless bath was tailored for magnesium alloy. The coating was characterized for its structure, morphology, microhardness and the corrosion properties. SEM observation showed the presence of dense and coarse nodules in the ternary coating. EDS analysis showed that the content of tungsten in the Ni-W-P alloy was 4.5 wt.%. Both the electrochemical analysis and the immersion test in 10% HCl solution revealed that the ternary Ni-W-P coating exhibited good corrosion resistance properties in protecting the AZ91D magnesium alloy.  相似文献   

13.
The surface chemistry on AZ31 and AZ91 magnesium alloys was characterized by X-ray photoelectron spectroscopy (XPS) in the corrosion and the passivation zones. In the corrosion zone, the presence of Mg(OH)2 and MgCO3 species was found in the outer surface, whereas, in the inner layer, the co-existence of Mg(OH)2, MgO and MgCO3 species was observed for both alloys. The presence of Al3+ in the surface electrolyte to form Al2O3/Al(OH)3 and the formation of carbonate product provide a better passivation on the surfaces and retard the chloride-induced corrosion on the materials in the passivation zone.  相似文献   

14.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

15.
采用沉积的方法在镁合金AZ31表面制备植酸转化膜并研究了pH值的影响. 利用极化曲线和电化学阻抗谱方法测定其耐腐蚀性能,用扫描电子显微镜观察转化膜的表面微观结构,用能谱测定转化膜的组成元素. 在理论上通过热力学的方法分析最佳pH值. 植酸转化膜可以提高镁合金AZ31的耐腐蚀性能. 当植酸溶液的pH=5时腐蚀效率达到了89.19%,此时腐蚀电位正移了156 mV,腐蚀电流密度与没有处理的试样相比减小了约一个数量级. 热力学分析表明植酸转化膜的耐腐蚀性能不仅受植酸根离子和镁离子浓度的影响,也与氢气释放的速率有关.  相似文献   

16.
The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl3-NaCl-KCl-MnCl2 molten salts at 170 °C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.  相似文献   

17.
Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied.Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.  相似文献   

18.
Pre-treatments based on different cerium salts were applied to the AZ31 Mg alloy. The pre-treatments were performed by immersion in solutions of various Ce(III) salts: cerium chloride, cerium nitrate, cerium sulphate and cerium phosphate. The chemical composition of the treated surfaces was investigated by X-ray photoelectron spectroscopy and Auger electron spectroscopy, whereas the corrosion behaviour of the pre-treated AZ31 substrates was investigated in 0.005 M NaCl solutions using potentiodynamic polarisation and open circuit potential monitoring. The surface film contained a mixture of Ce(IV) and Ce(III) salts. The film thickness depends upon the cerium salt used. The electrochemical results show that all the conversion pre-treatments reduced the corrosion activity of the AZ31 Mg alloy substrates in the presence of chloride ions. The corrosion protection efficiency is related with the anion present in the cerium salt.  相似文献   

19.
Two pre-treatments were studied for AZ31 Mg alloy substrates, consisting of immersion in cerium nitrate and lanthanum nitrate solutions for various immersion times. The surface composition was investigated by X-ray photoelectron spectroscopy and Auger electron spectroscopy that revealed the presence of a surface film containing the rare-earth cation, with a composition which was time dependent in the case of the cerium pre-treatment.The corrosion behaviour of the pre-treated substrates in 0.005 M NaCl solutions was assessed by potentiodynamic polarization, open circuit potential monitoring and the scanning vibrating electrode technique (SVET). The electrochemical results show that the pre-treatments reduced the corrosion activity of the AZ31 Mg alloy substrates in the presence of chloride ions. The corrosion protection efficiency is dependent on the treatment time.  相似文献   

20.
The dry sliding tribological behavior of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam (HIPIB) at energy density of 3.4 J/cm2 with 10 shots is investigated by dry sliding wear tests in order to explore the effect of HIPIB irradiation on tribological property of magnesium alloy. Surface morphologies, composition and structure of the irradiated AZ31 magnesium alloys are examined by electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results indicated that HIPIB irradiation led to the increase in surface microhardness and the reduction in friction coefficient and wear rate. Wear rate for both the original and the irradiated samples increased with increasing sliding load from 0.1 to 0.5 N. The transition from severe metallic wear to mild oxidative wear induced by HIPIB irradiation was observed by a combined analysis in surface morphology and chemical composition of wear tracks, mechanically mixed materials and wear debris, which is mainly attributed to the significant increase in microhardness resulting from grain refinement on the irradiated surface. In addition, defects induced by HIPIB irradiation promoted the diffusion of oxygen during sliding wear and therefore led to the formation of compact mixed materials and protective films on the wear tracks surface, which also contributes to the transition in wear mechanism of AZ31 magnesium alloy induced by HIPIB irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号