首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Highly transparent and conductive scandium doped zinc oxide (ZnO:Sc) films were deposited on c-plane sapphire substrates by sol–gel technique using zinc acetate dihydrate [Zn(CH3COO)2·2H2O] as precursor, 2-methoxyethanol as solvent and monoethanolamine as a stabilizer. The doping with scandium is achieved by adding 0.5 wt% of scandium nitrate hexahydrate [(ScNO3·6H2O)] in the solution. The influence of annealing temperature (300–550 °C) on the structural, optical and electrical properties was investigated. X-ray Diffraction study revealed that highly c-axis oriented films with full-width half maximum of 0.16° are obtained at an annealing temperature of 400 °C. The surface morphology of the films was judged by SEM and AFM images which indicated formation of grains. The average transmittance was found to be above 92% in the visible region. ZnO:Sc film, annealed at 400 °C exhibited minimum resistivity of 1.91 × 10−4 Ω cm. Room-temperature photoluminescence measurements of the ZnO:Sc films annealed at 400 °C showed ultraviolet peak at 3.31eV with a FWHM of 11.2 meV, which are comparable to those found in high-quality ZnO films. Reflection high-energy electron diffraction pattern confirmed the epitaxial nature of the films even without introducing any buffer layer.  相似文献   

2.
Electronic and optical properties of Al−Ga codoped ZnO thin films were investigated by post-annealing. The lowest resistivity of the Al-Ga codoped ZnO films was observed from the 450 °C-annealed sample. The Fermi-level shift of the Al−Ga codoped ZnO film was ∼0.6 eV from x-ray photoelectron spectroscopy, and the widening of optical-bandgap in the Al−Ga codoped ZnO film was ∼0.3 eV. The correlations of optical-bandgap with Fermi-level shift and conduction band filling were suggested by schematic band diagrams.  相似文献   

3.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

4.
We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10−4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark IV curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.  相似文献   

5.
In this paper, the experimental results regarding some structural, electrical and optical properties of ZnO thin films prepared by thermal oxidation of metallic Zn thin films are presented.Zn thin films (d=200–400 nm) were deposited by thermal evaporation under vacuum, onto unheated glass substrates, using the quasi-closed volume technique. In order to obtain ZnO films, zinc-coated glass substrates were isochronally heated in air in the 300–660 K temperature range, for thermal oxidation.X-ray diffraction (XRD) studies revealed that the ZnO films obtained present a randomly oriented hexagonal nanocrystalline structure. Depending on the heating temperature of the Zn films, the optical transmittance of the ZnO films in the visible wavelength range varied from 85% to 95%. The optical band gap of the ZnO films was found to be about 3.2 eV. By in situ studying of the temperature dependence of the electrical conductivity during the oxidation process, the value of about 2×10−2 Ω−1 m−1 was found for the conductivity of completely oxidized ZnO films.  相似文献   

6.
This study focuses on mechanism of ceramic coating on Al–Si alloys with bulk primary Si using plasma electrolytic oxidation (PEO) technology. Al–Si alloys with 27–32%Si in weight were used as substrates. The morphologies, composition and microstructure of PEO coatings were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray system (EDX). Results showed that the PEO process had four different stages. The effect of bulk Si is greatly on the morphology and composition of coatings at first three stages. Anodic oxide films formed on Al and Si phases, respectively. When the voltage exceeded 40 V, glow appeared and concentrated on the localized zone of interface of Al and Si phase. Al–Si–O compounds formed and covered on the dendrite Si phase surface, and the coating on bulk Si, which was silicon oxide, was rougher than that on other phase. If the treatment time was long enough, the coatings with uniform surface morphologies and elements distribution will be obtained but the microstructure of inner layer is looser due to the bulk Si.  相似文献   

7.
This paper describes the effect of doping on the composition, surface morphology and optical, structural and electrical properties of Al doped ZnO thin films by pulsed laser deposition. SEM analysis shows that the crystalline nature of the deposited films decreases with an increase of Al doping concentration from 1% to 6%. In the AFM analysis, the surface roughness of the deposited films increases by increasing the doping concentration of Al. Al doping strongly influences the optical properties of the ZnO thin films. Optical transmittance spectra show a very good transmittance in the visible region (450–700 nm). The calculated optical band gap was found to be in the range from 3.405 to 3.464 eV. Structural analysis confirms that the increases of Al concentration decrease the crystallinity of the ZnO films and the particle size decreases from 45.7±0.09 to 28.0±0.02 nm. In the Raman analysis, the active mode of Al(=1%) doped ZnO films were observed at 434.81 cm−1. The shifts of the active mode (E2)(E2) show the presence of tensile stress in the deposited films. The electrical properties of the deposited films showed that the values of the Hall mobility was in the range between 2.51 and 10.64 cm2/V s and the carrier concentration between 15.7 and 0.78×1017 and the resistivity values between 1.59 and 10.97 Ωcm, depending on the doping concentration.  相似文献   

8.
ZnO:Al films were deposited on glass substrates at 300 K and 673 K by direct current magnetron sputtering with the oblique target. The Ar pressure was adjusted to 0.4 Pa and 1.2 Pa, respectively. All the films have a wurtzite structure and grow with a c-axis orientation in the film growth direction. The films grow mainly with columnar grains perpendicular to the substrate and some granular grains also exist in the films. The film deposited at 673 K and 0.4 Pa has the largest grains whereas that prepared at 300 K and 0.4 Pa consists of the smallest grains and is porous. The films exhibit an n-type semiconducting behavior at room temperature. The ZnO:Al film deposited at 673 K and 0.4 Pa has the lowest resistivity (3.40 × 10−3 Ω cm), the highest free electron concentration (4.63 × 1020 cm−3) and a moderate Hall mobility (4.0 cm2 V−1 s−1). The film deposited at 300 K and 0.4 Pa has the highest resistivity and the lowest free electron concentration and Hall mobility. A temperature dependence of the resistivity reveals that the carrier transport mechanism is Mott’s variable range hopping in the temperature region below 100 K and thermally activated band conduction above 215 K. The activation energy for the film deposited at 300 K and 0.4 Pa is 41 meV and that for the other films is about 35 meV. All the films have an average optical transmittance of over 85% in the visible wavelength range. The absorption edge of the film deposited at 300 K and 0.4 Pa shifts to the longer wavelength (redshift) relative to the films prepared under the other conditions.  相似文献   

9.
In-doped ZnO (ZnO:In) transparent conductive thin films were deposited on glass substrates by RF magnetron sputtering. The effect of substrate temperature on the structural, electrical and optical properties of the ZnO:In thin films was investigated. It was found that higher temperature improves the crystallinity of the films and promotes In substitution easily. ZnO:In thin films with the best crystal quality were fabricated at 300 °C, which exhibit a larger grain size of 29 nm and small tensile strain of 0.9%. The transmittance of all the films was revealed to be over 85% in the visible range independence of the substrate temperatures and the lowest resistivity of ZnO:In thin films is 2.4×10−3 Ω cm.  相似文献   

10.
Al-doped ZnO (ZnO:Al) thin films with c-axis preferred orientation were deposited on glass substrates using the radio frequency reactive magnetron sputtering technique. The effect of Al concentrations on the microstructure and the luminescence properties of the ZnO:Al thin films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), and fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted by appropriate Al concentrations; the photoluminescence spectra (PL) of the samples were measured at room temperature. Strong blue peak located at 437 nm (2.84 eV) and two weak green peaks located at about 492 nm (2.53 eV) and 524 nm (2.37 eV) were observed from the PL spectra of the four samples. The origin of these emissions was discussed. In addition, absorption and transmittance properties of the samples were researched by UV spectrophotometer; the UV absorption edge shifted to a shorter wavelength first as Al was incorporated, and then to a longer wavelength with the increasing Al concentrations. The optical band gaps calculated based on the quantum confinement model are in good agreement with the experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号