首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designs of a quadrupole ion trap (QIT) as a source for time-of-flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel-plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (m/Δm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion-laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions.  相似文献   

2.
Atom trap trace analysis, a novel method based upon laser trapping and cooling, is used to count individual atoms of 41Ca present in biomedical samples with isotopic abundance levels between 10(-8) and 10(-10). The method is calibrated against resonance ionization mass spectrometry, demonstrating good agreement between the two methods. The present system has a counting efficiency of 2x10(-7). Within 1 h of observation time, its 3-sigma detection limit on the isotopic abundance of 41Ca reaches 4.5x10(-10).  相似文献   

3.
Rubidium Rydberg atoms are laser excited and subsequently trapped in a one-dimensional optical lattice (wavelength 1064 nm). Efficient trapping is achieved by a lattice inversion immediately after laser excitation using an electro-optic technique. The trapping efficiency is probed via analysis of the trap-induced shift of the two-photon microwave transition 50S→51S. The inversion technique allows us to reach a trapping efficiency of 90%. The dependence of the efficiency on the timing of the lattice inversion and on the trap laser power is studied. The dwell time of 50D(5/2) Rydberg atoms in the lattice is analyzed using lattice-induced photoionization.  相似文献   

4.
We characterise the performance of a surface-electrode ion “chip” trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes, which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to ?10?nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.  相似文献   

5.
The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17?mJ and a peak intensity of about 250?MW/cm2. A?time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 105 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10?7 to 10?6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.  相似文献   

6.
The ionization mechanisms of several atmospheric pressure ion sources based on desorption and ionization of samples deposited on a surface were studied. Home-built desorption electrospray ionization (DESI), laserspray ionization (LSI), and atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) sources were characterized using low-molecular-weight compounds, in particular fluorescent dyes. Detection of the desorbed and ionized species was performed by laser-induced fluorescence and ion cyclotron resonance mass spectrometry. The dependences of the signal intensities on various experimental parameters were studied. The data obtained reveals common features, such as formation of solvated species and clusters in the ionization processes, in all of the techniques considered.  相似文献   

7.
Conventional matrix-assisted laser desorption/ionization mass spectrometry is limited to analyses of higher molecular weight compounds due to high background noise generated by the matrix in the lower mass region. Surface-assisted laser desorption/ionization (SALDI) mass spectrometry is an alternative solution to this problem. Nanoparticles, structured silicon surfaces and carbon allotropes are commonly used as SALDI surfaces. Here, for the first time, we demonstrate the application of silicon nitride nanoparticles as a suitable medium for laser desorption/ionization of small drug molecules.  相似文献   

8.
The highest precision in the determination of nuclear and atomic masses can be achieved by Penning trap mass spectrometry. The mass value is obtained through a measurement of the cyclotron frequency of the stored charged particle. Two different approaches are used at the Penning trap mass spectrometer TRIGA-TRAP for the mass determination: the destructive Time-Of-Flight Ion Cyclotron Resonance (TOF-ICR) technique and the non-destructive Fourier Transform Ion Cyclotron Resonance (FT-ICR) method. New developments for both techniques are described, which will improve the detection efficiency and the suppression of contaminations in the case of TOF-ICR. The FT-ICR detection systems will allow for the investigation of an incoming ion bunch from a radioactive-beam facility on the one hand, and for the detection of a single singly charged ion in the Penning trap on the other hand.  相似文献   

9.
We are planning test experiments of fundamental symmetries based on the intrinsic properties of francium. It is expected that the laser cooling and trapping of francium will produce precision measurements. The pilot experiment using rubidium was performed with the goal of francium trapping. The ion beam generated with a francium ion source was investigated using a Wien filter. Each piece of equipment still must be studied in more detail, and the equipment should be upgraded in order to trap radioactive atoms.  相似文献   

10.
《中国物理 B》2021,30(5):53702-053702
Micromotion induced by the radio-frequency field contributes greatly to the systematic frequency shifts of optical frequency standards. Although different strategies for mitigating this effect have been proposed, trapping ions optically has the potential to provide a generic solution to the elimination of micromotion. This could be achieved by trapping a single ion in the dipole trap composed of a highpower laser field. Here, we present the setup of the dipole trap composed of a 532 nm laser at a power of 10 W aiming to optically trap a single ~(40)Ca~+ and we observe an AC-Stark shift of the fluorescence spectrum line of ~22 MHz caused by the 532 nm dipole beam. The beam waist of the dipole laser is several microns, which would provide a dipole potential strong enough for all-optical trapping of a single ~(40)Ca~+ ion.  相似文献   

11.
We have used analytical laser induced liquid beam desorption in combination with high resolution mass spectrometry ( mm≥ 1000) for the study of protonated amino acids (ornithine, citrulline, lysine, arginine) and their non-covalently bound complexes in the gas phase desorbed from water solutions. We report studies in which the desorption mechanism has been investigated. The results imply that biomolecule desorption at our conditions is a single step process involving laser heating of the solvent above its supercritical temperature, a rapid expansion, ion recombination and finally isolation and desorption of only a small fraction of preformed ions and charged aggregates. In addition, we report an investigation of the aqueous solution concentration and pH-dependence of the laser induced desorption of protonated species (monomers and dimers). The experimental findings suggest that the desorption process depends critically upon the proton affinity of the molecules, the concentration of other ions, and of the pH value of the solution. Therefore the ion concentrations measured in the gas phase very likely reflect solution properties (equilibrium concentrations). Arginine self-assembles large non-covalent singly protonated multimers (n = 1...8) when sampled by IR laser induced water beam desorption mass spectrometry. The structures of these aggregates may resemble those of the solid state and may be preformed in solution prior to desorption. A desorption of mixtures of amino acids in water solution enabled us to study (mixed) protonated dimers, one of the various applications of the present technique. Reasons for preferred dimerization - leading to simple cases of molecular recognition - as well as less preferred binding is discussed in terms of the number of specific H-bonds that can be established in the clusters.  相似文献   

12.
《应用光谱学评论》2013,48(3):275-303
ABSTRACT

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is a technique that has attracted widespread interest since its introduction in 1988. It is primarily implemented using time-of-flight or trapped ion mass analyzers and greatly facilitates determination of molecular weights for biomolecules, polymers, and natural products. Numerous publications on these and related applications have appeared during the past ten years. The present brief MALDI review is intended to provide selected coverage of recent literature, with special emphasis on applications to proteomics, whole cells and tissues, polymers, organic and inorganic molecules. In view of the intense current interest, the choice of topics emphasizes biochemically-related applications.  相似文献   

13.
A novel experimental technique for tandem mass spectrometry and ion spectroscopy of electrosprayed ions using vacuum‐ultraviolet (VUV) synchrotron radiation is presented. Photon activation of trapped precursor ions has been performed by coupling a commercial linear quadrupole ion trap (Thermo scientific LTQ XL), equipped with the electrosprayed ions source, to the DESIRS beamline at the SOLEIL synchrotron radiation facility. The obtained results include, for the first time on biopolymers, photodetachment spectroscopy using monochromated synchrotron radiation of multi‐charged anions and the single photon ionization of large charge‐selected polycations. The high efficiency and signal‐to‐noise ratio achieved by the present set‐up open up possibilities of using synchrotron light as a new controllable activation method in tandem mass spectrometry of biopolymers and VUV‐photon spectroscopy of large biological ions.  相似文献   

14.
介绍了一种将红外激光解吸/真空紫外光电离质谱技术应用于分析胆固醇的新方法. 由于近阈值单光子电离作用,可以在低能量下只产生纯净的胆固醇分子离子峰;增加光子能量则可以使碎片离子峰大量出现. 为了验证碎片离子的归属,利用商用高分辨电子轰击电离-飞行时间质谱仪分析并指认了胆固醇主要的碎片峰. 此外,采用量子化学从头算的方法研究了胆固醇母体离子和碎片构型,并讨论了部分主要的光解离机理  相似文献   

15.
An ion trap has been modified for the analysis of high mass ions generated by matrix-assisted laser desorption/ionization. Samples are deposited on a probe tip and introduced directly onto the hyperbolically shaped surface of one endcap. All three electrodes - both the endcaps and the ring electrode - are insulated so that the radio frequency (Rf) voltage may be applied to the center ring electrode and the inverted Rf voltage to the endcaps. By using low frequencies (below 100 kHz) and low amplitudes (below 200 V), high mass singly charged ions may be trapped and analyzed by a frequency sweep at constant amplitude. In the high mass range (60-160 kDa), this instrument showed good sensitivity, signal-to-noise ratios, and mass resolution. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.  相似文献   

17.
TITAN is an on-line facility dedicated to precision experiments with short-lived radioactive isotopes, in particular mass measurements. The achievable resolution on mass measurement, which depends on the excitation time, is limited by the half life of the radioactive ion. One way to bypass this is by increasing the charge state of the ion of interest. TITAN has the unique capability of charge-breeding radioactive ions using an electron-beam ion trap (EBIT) in combination with Penning trap mass spectrometry. However, the breeding process leads to an increase in energy spread, ??E, which in turn negatively influences the mass uncertainty. We report on the development of a cooler Penning trap which aims at reducing the energy spread of the highly charged ions prior to injection into the precision mass measurement trap. Electron and proton cooling will be tested as possible routes. Mass selective cooling techniques are also envisioned.  相似文献   

18.
A novel device, called quantum sensor, has been conceived to measure the mass of a single ion with ultimate accuracy and unprecedented sensitivity while the ion is stored and cooled in a trap. The quantum sensor consists of a single calcium ion as sensor, which is laser cooled to mK temperatures and stored in a second trap connected to the trap for the ion under study by a common endcap. The cyclotron motion of the ion under investigation is transformed into axial motion along the magnetic field lines and coupled to the sensor ion by the image current induced in the common endcap. The axial motion of the sensor ion in turn is monitored spatially resolved by its fluorescence light. In this way the detection of phonons can be upgraded to a detection of photons. This device will allow one to overcome recent limitations in high-precision mass spectrometry.  相似文献   

19.
Nanoparticle trapping in a nanofluidic device utilizing geometry-induced electrostatic (GIE) potential trap is an efficient and robust way to perform nano‑object confinement and single particle studies. The GIE‑trapping is a passive method that solely depends on the device geometry and device-particle surface interaction. Therefore, optimization of a nanofluidic device based on experimental requirements, helps to achieve stiffer single-particle trapping. The efficiency of a GIE‑trapping device is defined in terms of residence time and trapping stiffness of the nanoparticle inside a potential trap. The present study reveals all crucial parameters that affect the device efficiency, particle trapping stiffness, and particle residence time. Furthermore, the trends of particle trapping stiffness are presented as a function of crucial parameters and demonstrate two variants of simulations to estimate the particle trapping efficiency: (a) using charged particle, and (b) using point charge approximation. Simulations with charged particle give more realistic values related to particle trapping whereas simulations with point charge approximation is a faster approach which gives approximate values and a guideline for more rigorous simulations. The results demonstrate a good agreement with experimental observations and hold the key for future developments in this field, wherein a device geometry can be very precisely optimized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号