首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pulse laser-diode-array (LDA)-pumped, single-axial-mode, intracavity frequency-doubled Nd:YVO4 laser has been demonstrated by using an birefringent filter consisting of a KTP crystal and two Brewster plates (BP). Up to 72.4 mW average output power is obtained for 800 mW pumping power with an optical-to-optical conversion efficiency of 9.1%. The maximum peak power of the single-frequency green laser is 22.3 W with the pulse width 162 μs.  相似文献   

2.
LD泵浦Nd:YVO4晶体KTP腔内倍频红光激光器   总被引:5,自引:1,他引:4  
张恒利  何京良 《光子学报》2000,29(5):470-473
报道了激光二极管泵浦Nd:YVO4晶体,临界相位匹配KTP晶体腔内倍频红光激光器.通过对激光晶体热效应的考虑,设计了热不灵敏腔,最大获得了273mW 671nm红光输出.  相似文献   

3.
A laser diode directly end-pumped, passively Q-switched Nd:YVO4/Cr:YAG laser is presented in this paper. With 600 mW incident pump laser, Q-switched 1064 nm laser with an average power of 138 mW, pulse width of 19.8 ns, repetition rate of 170.1 kHz and peak power of 40.96 W is obtained. When a KTP crystal was inserted into the cavity, Q-switched 532 nm laser with an average power of 56 mW, pulse width of 28.4 ns, repetition rate of 118.2 kHz and peak power of 16.7 W is obtained at last.  相似文献   

4.
We report analytical and experimental studies on the characteristics of a high-brightness laser diode endpumped Nd:YVO4/KTP laser. A simple model was developed to optimize the cavity parameters and estimate the green output power of intracavity frequency doubled lasers. Using a 1 W high-brightness laser diode as the pump source, high efficiency operation was realized. The second-harmonic output power at 532 nm was measured to be 286.5 mW at an incident pump power of 881.4 mW, corresponding to an optical to optical efficiency of 32.5%.  相似文献   

5.
Fu  Q.  Jiang  H. L. 《Laser Physics》2012,22(5):907-910
We report a continuous-wave (CW) green laser emission by sum-frequency mixing in Nd:YVO4 and Nd:YLF crystals. Using type-II critical phase-matching (CPM) KTP crystal, a green laser at 539 nm is obtained by 914 and 1313 nm intracavity sum-frequency mixing. The maximum laser output power of 388 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 388 mW, the output stability is better than 4.6%.  相似文献   

6.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

7.
张玉萍  郑义  张会云  王鹏  姚建铨 《中国物理》2006,15(9):2018-2021
A compact, efficient and high-power laser diode (LD) single-end-pumped Nd:YVO4 laser with continuous-wave emission at 1342 nm is reported. With a single crystal single-end-pumped by fibre-coupled LD array, an output power of 7.36W is obtained from the laser cavity of concave-convex shape, corresponding to an optical-to-optical efficiency of 32.8%. The laser is operated in TEM00 mode with small rms amplitude noise of 0.3%. The influences of the Nd concentration, transmissivity of the output mirror and the cavity length on the output power have been studied experimentally.  相似文献   

8.
A high polarization Nd:YVO4/KTP laser with dual crossed gain crystal is reported. Using two optical axis orthogonal Nd:YVO4 crystal as gain medium, eliminating the depolarization effect of single Nd:YVO4 crystal, the high polarization green laser is obtained. With 1.8 W diode laser pump power the output power of TEM00 green laser is 366 mW, the light–light conversion efficiency is up to 20.3%, and the polarization ratio is 110:1. This laser has the advantages of being simple and easily attainable at a low cost, and it is suitable for batch production.  相似文献   

9.
A LD-pumped single-frequency passively Q-switched Nd: YVO4/KTP/Cr:YAG green laser is presented. Cr:YAG plays the double role of a passive Q-switch and a Brewster plate. With 900 mW incident pump laser, single-frequency passively Q-switched green laser with average power of 86 mW, pulse width of 14.7 ns, repetition rate of 140.8 kHz and peak power of 41.6 W is obtained. Measurement shows that the pulse amplitude and period between pulses are stable within ±1.5%.  相似文献   

10.
We report for the first time a continuous-wave (CW) orange-red radiation at 620 nm by intracavity sum-frequency generation of 1085-nm Nd:YVO4 laser and 1444-nm Nd:YAG laser. Using type-II critical phase matching KTP crystal, 620-nm orange-red laser was obtained by 1085- and 1444-nm intra-cavity sum-frequency mixing, and output power of 223 mW was demonstrated. At the output power level of 223 mW, the output power stability is better than 3% and laser beam quality M 2 factor is 1.32.  相似文献   

11.
Q.S. Pang  J. Fu  L.Z. Xu  W.R. Guo  G. Li 《Optics Communications》2011,284(20):4983-4985
A diode pumped Nd:YVO4 semiconductor saturable absorber mirror (SESAM) passive mode-locked intracavity frequency doubled laser was studied. A type II phase matching KTiOPO4(KTP) crystal and a type I phase matching LiB3O5 (LBO) frequency doubling crystal were respectively inserted in the cavity. With a pump power of 4.5 W, a 90 mW output of frequency doubled beam and 29.7 ps pulse duration were achieved with frequency doubled by KTP. With the same pump power a 140 mW output of frequency doubled beam and 3.67 ps pulse duration were achieved with LBO.  相似文献   

12.
利用Nd:YVO4激光晶体的自受激拉曼效应,结合Cr:YAG被动锁模技术和倍频技术,实现了结构紧凑的1176 nm和588 nm黄光锁模激光输出。激光器为LD端面泵浦,三镜折叠腔结构,并且采用了透过率为10%的输出镜。Nd:YVO4晶体长度为10 mm,Nd3+离子掺杂质量分数为0.2%,Cr:YAG晶体的初始透过率为67%。10 W激光泵浦时,1176 nm激光平均输出功率为123 mW,调Q包络宽度为6 ns,调Q包络内的锁模脉冲重复频率高达1 GHz。588.2 nm 黄光的平均输出功率为8 mW。  相似文献   

13.
报道了LD端面抽运c切Nd:YVO4自拉曼倍频黄光激光器的研究. 采用10 mm长,二类临界相位匹配角 (θ=69°,ø=0°)切割的KTP晶体作为倍频晶体. 考虑到c切Nd:YVO4跃迁截面较小,所以通过对谐振腔及晶体膜系的严格设计,减少腔内插入损耗和衍射损耗. 最终在脉冲重复率为10 kHz,抽运功率为11.2 W下,获得了最高570 mW的倍频黄光激光输出,对应抽运光到倍频黄光的转化效率约为 关键词: 拉曼激光 c切Nd:YVO4')" href="#">c切Nd:YVO4 589 nm 黄光激光  相似文献   

14.
LD泵浦Nd:YVO4/KTP/BBO紫外激光器   总被引:3,自引:0,他引:3  
本文报道在国内首次实现的LD泵浦的四倍频连续紫外激光器的实验结果.首先研究了LD泵浦的Nd:YVO4激光器,在普通平-平腔结构下,得到斜效率55.68%,激光输出波长1064nm;利用KTP作为倍频晶体,实现腔内倍频,在泵浦功率11.85W时得到绿光(532nm)输出1.35W,光-光转换效率11%;用BBO晶体进行外腔谐振倍频,得到紫外光(266nm)输出.  相似文献   

15.
We present the practical realization of a monolithic single-frequency diode pumped Nd:YVO4/YVO4/KTP microchip laser with birefringent filter operating at 532?nm. Theoretical analysis of the single-mode operation of such a laser configuration is presented. Experimental results are in good agreement with theoretical analysis. The laser operated with output power up to 90?mW at 532?nm. The total optical efficiency (808?nm to 532?nm) was 9.5%. Power stability was at the level of ±0.75% and the long-term frequency stability was approximately 3×10?8. The beam has a Gaussian profile and the M2 parameter was below 1.2.  相似文献   

16.
A compact 500.9 nm laser was realized using doubly resonant intracavity sum–frequency mixing. An Nd:YAG crystal and an Nd:YVO4 crystal were employed as the gain crystals. In two sub-cavities, 946 nm radiation from the Nd:YAG and 1064 nm radiation from the Nd:YVO4 were mixed to generate 500.9 nm. In the overlapping of the two cavities, sum–frequency mixing was achieved in a type-II critical phase-matched KTP crystal. An output power of 78 mW at a wavelength of 500.9 nm was generated using a total incident pump power of 4 W and the output light exhibited low noise, with the root-mean-square value being 0.3%.  相似文献   

17.
端面泵浦双Nd: YVO4激光器中热效应对腔稳定性的影响   总被引:7,自引:6,他引:1  
利用多个激光晶体串接方式可以提高固体激光器的输出功率. 发展双Nd: YVO4晶体激光器, 将晶体的端面镀膜作为谐振腔的端面镜, 构成了平行平面谐振腔. 对平行平面谐振腔的等效腔进行了理论分析, 结果表明激光晶体吸收泵浦光产生的热透镜效应对保持腔的稳定性起到了重要的作用. 在国内首次进行了双端泵浦双Nd: YVO4激光器的实验研究, 在抽运功率为 20.74 W时获得了11 W的1064 nm TEM00模激光输出, 其光-光转化效率约为53%. 并且对于不同掺杂浓度下的实验结果进行了讨论.  相似文献   

18.
We present our studies on dual wavelength operation using a single Nd:YVO4 crystal and its intracavity sum frequency generation by considering the influence of the thermal lensing effect on the performance of the laser. A KTP crystal cut for type-II phase matching was used for intracavity sum frequency generation in the cavity at an appropriate location for efficient and stable yellow output power. More than 550 mW of stable CW yellow-orange beam at 593.5 nm with beam quality parameter (M 2) ~4. 3 was obtained. The total pump to yellow beam conversion efficiency was estimated to be 3.83%.  相似文献   

19.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

20.
A gray-trace resistance KTP (GTR-KTP) second Stokes Raman laser intracavity driven by a diode-pumped acousto-optic Q-switched Nd:YVO4 laser was first demonstrated in this paper. With an incident pump power of 9.5 W, the intracavity GTR-KTP Raman laser, operating at the repetition rate of 20 kHz, produced the maximum average output power of 860 mW at 1129 nm. The minimum pulse width obtained in this GTR-KTP Raman laser was 10.8 ns. When the GTR-KTP was substituted with a common KTP, a lower average output power of 720 mW and longer pulse width of 15.9 ns were obtained in the common KTP Raman laser under the same pump condition and cavity setup as the GTR-KTP Raman laser. Experimental results indicated that the decreased absorption at the fundamental and Stokes wave in GTR-KTP was beneficial to improve the stimulated Raman scattering performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号