首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
针对汽油等多组分燃料液滴的蒸发过程,本文引入了混合蒸发模型进行计算。该模型将燃料分为若干个烃类化合物组,并且采用概率密度函数描述每组烃类化合物中具体组分的分布。通过将混合蒸发模型的计算结果与单Gamma分布模型的结果以及实验数据的对比,表明当前混合蒸发模型能够更加准确地描述燃料热物性参数和燃料组分分布。通过使用混合蒸发模型对单个汽油液滴蒸发过程进行模拟,表明每组烃类中轻质组分优先蒸发,在相同分子量范围内,芳香烃类化合物相对于其它烃类化合物组滞后蒸发。  相似文献   

2.
朱广圣  吴锤结 《计算物理》1997,14(6):846-850
介绍了一种对计算着火和燃烧反应流动问题较为有效的自适应网格方法。将该方法与任意拉格朗日-欧拉数值方法相结合,研究了燃料液滴的着火和燃烧问题。给出了液滴着火和燃烧过程中主要物理参数的时空分布,揭示了过程的基本特征。  相似文献   

3.
多组分生物燃料液滴蒸发过程研究   总被引:1,自引:0,他引:1  
生物乙醇和生物柴油是发展迅速且潜力巨大的两种生物燃料,在最近关于生物乙醇、生物柴油与常规柴油掺混的三组分燃料的研究中发现了许多良好的燃烧特性。然而,人们对于这种轻质+中质+重质组成的新燃料的蒸发和燃烧机理尚不清楚,其蒸发特性尚待研究。本文在建立的描述多组分液滴蒸发所需的气相模型、液相模型、气液界面耦合方程基础上,对多组分生物燃料液滴的蒸发过程进行了研究并得到液滴表面以及内部详细的组分和温度分布。  相似文献   

4.
液滴的流动蒸发换热是一个即常见又基础的问题,对液滴的流动蒸发换热进行准确的描述对许多工程实际及科学研究都有很重要的意义。对于这样一个多相、多组分输运的物理过程,本文使用VOF方法对液滴形态进行描述,建立动力学蒸发模型对液滴的蒸发过程进行刻画,同时在气相中使用组分输运方程最大程度上还原了液滴蒸发的物理过程。本文使用所建立的数值方法对正庚烷液滴的自然对流蒸发及强迫对流蒸发进行了数值模拟计算,与实验结果吻合良好。  相似文献   

5.
为了探究叠氮复合柴油实现快速燃烧的根本原因,本文在挂滴试验装置上利用高速摄像技术观察了初始直径为1.42 mm的苄基叠氮化合物液滴蒸发过程中的形态变化,研究了环境温度对液滴蒸发特性的影响。试验结果表明当环境温度达到苄基叠氮化合物发生液相化学反应的温度时,液滴的蒸发特性将发生根本改变,而且在液滴蒸发过程中观察到了液滴变形、气泡产生和膨胀、喷气、微爆等四种主要现象,这一强烈的反应是液滴内部的苄基叠氮化合物在液相中分解高速释放出的N_2所引起地。  相似文献   

6.
轻组份燃料对乳化油蒸发与着火影响的研究   总被引:5,自引:0,他引:5  
本文研究了较组份添加剂对单滴乳化油着火规律的影响。实验采用挂滴法。实验中,测量了体积比为十二烷:正庚烷:水6:0:4,5:1:4,4:2:4,3:3:4的着火延迟时间。实验结果和数值计算表明,在乳化油中加入易挥发添加剂能有效缩短乳化油的着火延迟时间,着火延迟时间随着添加剂加入量的增加而缩短,当易挥发添加剂含量较大时,着火延迟随着添加剂加入量的增加,变化越来越缓慢。这一结果对解决在掺水量大的条件下保证柴油机中乳化燃料的正常点火与启动具有实用价值。  相似文献   

7.
一、前言 近年来已有许多学者对煤浆的燃烧特性进行了大量的理论及实验研究。 如黄兆祥、吴忆峰等研究了水煤浆粒度配比对流动性及着火温度的影响;岑可法等将水煤浆燃烧分为蒸发、挥发份析出及燃烧和固定碳燃烧三个阶段;付维标等认为在强迫对流下,随来流速度的增加水煤浆滴着火温度提高,着火时间提前;T.Sakai和M.Saito认为油煤  相似文献   

8.
为了提高甲醇射流火焰数值模拟的精度,本文首先通过实验得到了甲醇蒸发率与温度的关系曲线,形成新的两相传质关系;其次应用基于Frank-Kamentsky近似的液滴着火模型和新的蒸发模型对某甲醇空气射流火焰进行了数值模拟,将应用已有模型、仅应用蒸发模型、同时应用蒸发模型和着火模型(混合模型)的预报结果与实验结果对比检验。结果表明,应用蒸发模型的预报结果比已有模型的模拟结果更接近实验值,混合模型的预报结果最好。  相似文献   

9.
燃料液滴高压蒸发理论   总被引:2,自引:0,他引:2  
本文提出了一个燃料液滴在高压环境下的蒸发理论,该理论考虑了液滴表面的内移、液滴不定常加热以及高压非理想气体效应的影响等因素。计算了C_(12)H_(26)液滴在1.8—90大气压、2000—3200°K的N_2气介质中蒸发时的滴温、半径随时间变化的关系。计算结果表明,存在一个划分亚临界蒸发和超临界蒸发的压力极限,在亚临界蒸发时,液滴生存时间随压力增加而减少,超临界蒸发时,液滴生存时间随压力增加而增加,在本例情况下,此极限压力值为2.23p_c。  相似文献   

10.
王浩  徐进良 《物理学报》2023,(5):308-319
热油面液滴蒸发是自然现象,已有研究侧重于单滴蒸发,对于热油面上多滴蒸发的认识较少.本文研究了热硅油面两个等直径FC-72液滴的Leidenfrost蒸发,油温为74.0—130.0℃,液滴初始直径为1.5 mm,采用红外热成像及高速摄影测量,发现热油面液滴蒸发存在非聚合、弹跳、分离3个阶段.本文理论分析了液滴在水平方向的受力,包括非均匀液滴温度产生的Marangoni力、重力水平分量、润滑推动力、黏性力.尺度分析表明Marangoni力和重力水平分量起关键作用,Marangoni力趋向于液滴分离,重力水平分量趋向于液滴聚合.在非聚合蒸发阶段,重力水平分量克服Marangoni力,但两液滴间存在气膜夹层,解释了两个液滴看似接触但不聚合的现象.随液滴尺寸减小,重力水平分量减小,不足以克服Marangoni力,这是导致蒸发后期两滴分离的主要原因.最后通过将模型得到的不同阶段间的转换时间同测量值进行对比,证实了上述解释.本文研究有助于理解复杂的Leidenfrost液滴动力学现象和机理.  相似文献   

11.
This study examines the effect of turbulence on the ignition of multicomponent surrogate fuels and its role in modifying preferential evaporation in multiphase turbulent spray environments. To this end, two zero-dimensional droplet models are considered that are representative of asymptotic conditions of diffusion limit and the distillation limit are considered. The coupling between diffusion, evaporation and combustion is first identified using a scale analysis of 0D homogeneous batch reactor simulations. Subsequently, direct numerical simulations of homogeneously dispersed multicomponent droplets are performed for both droplet models, in decaying isotropic turbulence and at quiescent conditions to examine competing time scale effects arising from evaporation, ignition and turbulence. Results related to intra-droplet transport and effects of turbulence on autoignition and overall combustion are studied using an aviation fuel surrogate. Depending on the characteristic scale, it is shown that turbulence can couple through modulation of evaporation time or defer the ignition phase as a result of droplet cooling or gas-phase homogenization. Both preferential evaporation and turbulence are found to modify the ignition delay time, up to a factor of two. More importantly, identical droplet ignition behavior in homogeneous gas phase can imply fundamentally different combustion modes in heterogeneous environments.  相似文献   

12.
Processes of heat and mass transfer with phase transitions and chemical reactions at the ignition of a liquid fuel droplet colliding with the surface of a hot metal substrate are numerically investigated. The droplet ignition delay times are found. The scale of the influence of the temperature of the substrate, droplet, and oxidizer, and also the droplet size and spreading rate on the ignition inertia is determined. Conditions in which the liquid fuel droplet spread plays an important role in the ignition process are found.  相似文献   

13.
单滴燃料热壁蒸发、微爆与着火的实验研究   总被引:1,自引:0,他引:1  
多组分燃料在热板的蒸发与着火规律与空间相比,具有一些新的特点,特别是乳化油的贴壁燃烧现象更有重要意义。本文通过实验将多组分与单组分的燃烧情况进行了对比研究。结果表明:(1)易挥发组分的着火延迟在较低的温度条件下长于不易挥发份,在较高温度时情况相反。混合物则居于其中;(2)对于含水的乳化油,燃烧与微爆发生先后同的外界条件有关,其着火过程极为迅速。(3)乳化油中易挥发燃料含量较高,环境温度也较高时,微爆滞后很明显。  相似文献   

14.
Bio-based alternative fuels have received increasing attention with growing concerns about depletion of fossil reserves and environmental deterioration. The development of new combustion concepts in internal combustion engines requires a better understanding of autoignition characteristics of the bio-based alternative fuels. This study investigates two cases of alternative fuels, namely, a kerosene-type fuel farnesane and an oxygenated fuel, TPGME, and compares those fuels with full-boiling range of fuels with similar cetane number. The homogeneous autoignition and spray ignition characteristics of the selected fuels are studied using a modified CFR octane rating engine and a cetane rating instrument, respectively. When comparing farnesane with a full-boiling range counterpart (HRJ8), their similar cetane ratings result in comparable combustion heat release, but the overall ignition reactivity of farnesane is stronger than HRJ8 during the pre-ignition process. Results from a constant volume spray combustion chamber indicate that the spray process of farnesane and HRJ8 strongly influences the overall ignition delay of each fuel. Despite the similar cetane ratings of TPGME and n-heptane, TPGME shows greater apparent low-temperature oxidation reactivity at low compression ratios in the range from CR 4.0-5.5 than n-heptane. A simplified model focused on the key reaction pathways of low-temperature oxidation of TPGME has been applied to account for the stronger low-temperature reactivity of TPGME, supported by density functional theory (DFT) calculations. Regardless of the similar cetane ratings of the fuels, n-heptane and JP-8/SPK lead to similar total ignition delay times, while TPGME shows the shortest overall ignition delay times in the constant volume combustion chamber.  相似文献   

15.
The combustion of two fuels with disparate reactivity such as natural gas and diesel in internal combustion engines has been demonstrated as a means to increase efficiency, reduce fuel costs and reduce pollutant formation in comparison to traditional diesel or spark-ignited engines. However, dual fuel engines are constrained by the onset of uncontrolled fast combustion (i.e., engine knock) as well as incomplete combustion, which can result in high unburned hydrocarbon emissions. To study the fundamental combustion processes of ignition and flame propagation in dual fuel engines, a new method has been developed to inject single isolated liquid hydrocarbon droplets into premixed methane/air mixtures at elevated temperatures and pressures. An opposed-piston rapid compression machine was used in combination with a newly developed piezoelectric droplet injection system that is capable of injecting single liquid hydrocarbon droplets along the stagnation plane of the combustion chamber. A high-speed Schlieren optical system was used for imaging the combustion process in the chamber. Experiments were conducted by injecting diesel droplet of various diameters (50 µm < do < 400 µm), into methane/air mixtures with varying equivalence ratios (0 < ϕ < 1.2) over a range of compressed temperatures (700 K < Tc < 940 K). Multiple autoignition modes was observed in the vicinity of the liquid droplets, which were followed by transition to propagating premixed flames. A computational model was developed with CONVERGE™, which uses a 141 species dual-fuel chemical kinetic mechanism for the gas phase along with a transient, analytical droplet evaporation model to define the boundary conditions at the droplet surface. The simulations capture each of the different ignition modes in the vicinity of the injected spherical diesel droplet, along with bifurcation of the ignition event into a propagating, premixed methane/air flame and a stationary diesel/air diffusion flame.  相似文献   

16.
This study explores the impacts of combinations of biofuel (ethanol, isobutanol and 2-methyl furan) and aromatic (toluene) compounds in a four component fuel blend, at fixed research octane number (RON) on ignition delay measured in an advanced fuel ignition delay analyzer (AFIDA 2805). Ignition delay measurements were performed over a range of temperatures from 400 to 725 °C (673 to 998 K) and two chamber pressures of 10 and 20 bar. The four component mixtures are compared to primary reference fuels at RON values of 90 and 100. The ignition delay measurements show that as the aromatic and biofuel concentrations increased, two stage ignition behavior was suppressed, at both initial chamber pressures. But both RON 100 (isooctane) and RON 90 reference fuels showed two stage ignition behavior, as did fuel mixtures with low biofuel and aromatic content. RON 90 fuels showed stronger two stage ignition behavior than RON 100 fuels, as expected. Depending on the type of biofuel in the mixture, the ignition delay at low chamber temperatures could be far greater than for the reference fuels. In particular, for the RON 100 mixtures at either 10 or 20 bar initial chamber pressure, the ignition delay at 400 °C (673 K) for the high level blend of 2-methyl furan and toluene (30 vol% of each) exhibited an ignition delay that was 10 times longer than for neat isooctane. The results show the strong non-linear octane blending response of these three biofuel compounds, especially in concert with the kinetic antagonism that toluene is known to display in mixtures with isooctane. These results have implications for the formulation of biofuel mixtures for spark ignition and advanced compression ignition engines, where this non-linear octane blending response could be exploited to improve knock resistance, or modulate the autoignition process.  相似文献   

17.
Fast and reliable high altitude re-ignition is a critical requirement for the development of alternative jet fuels (AJFs). To achieve stable combustion, a spark kernel needs to transit in a partially or fully extinguished flow to develop a flame front. Understanding the relight characteristics of the AJFs is complicated by the chaoticity of the turbulent flow and variations in the spark properties. The focus of this study is the prediction of such characteristics by high-fidelity simulations, with a specific focus on fuel composition effect on the ignition process. For this purpose, a previously developed computational framework is applied, which utilizes high-fidelity LES simulations, a hybrid tabulation approach for modeling forced ignition and detailed quantification of uncertainty resulting from initial and boundary conditions to predict ignition probability. The method is applied to two alternative fuels (named C1 and C5) and Jet-A fuel (named A2) under gaseous conditions. Results show that the mixing of kernel and fuel–air mixture is not affected by the ignition process, but chemistry effects strongly dominate ignition probability. In particular, C1 exhibits much lower ignition probability than the other two fuels, especially at lean operating conditions. More importantly, this behavior is contradictory to ignition delay experiments which predict longer delay times for C5 compared to C1. Comparisons with experiments show that the comprehensive modeling approach captures the ignition trends. Analysis of kernel trajectories in composition space shows that the variations are caused by the relative effects of kernel mixing, response to strain, and ignition properties of the fuel.  相似文献   

18.
This work deals with the numerical simulation on an unstructured mesh of the ignition and burning in an oxidizing atmosphere of a fuel droplet heated on one side. This is relevant for studying the ignition of droplets in a spray when they are crossing a flame zone stabilized in it. The droplet here is replaced by a porous cylinder, and the flame by a hot solid wall. The reaction is assumed to be described by a single step, A?+?νB?→?P. The cell-centred finite volume scheme considered here uses a generalized Roe's approximate Riemann solver with the monotonic upwind scheme for conservative laws (MUSCL) technique for the convective part and Green–Gauss type interpolation for the viscous part. The thinness of the reaction zone is taken into account by using an adaptive refinement–unrefinement procedure. It has been found that the process of droplet ignition takes place by means of a propagation of a triple flame around the ‘droplet’ when the chemical reaction is sufficiently fast with respect to the molecular heat and mass diffusion process.  相似文献   

19.
This paper describes a comprehensive characterization of ignition properties of a metal-hydride based non-toxic hypergolic hybrid rocket propellant. The propellant consists of Rocket Grade Hydrogen Peroxide (RGHP) as oxidizer, high-density Polyethylene (HDPE) as fuel and sodium borohydride (NaBH4) as the additive, embedded in the HDPE matrix. Ignition quality was characterized as ignition delay, ignition probability and flame spread. In a drop-test setup, ignition characteristics were determined as a function of seven parameters: RGHP concentration, additive loading, oxidizer droplet impact velocity, oxidizer droplet volume, pressure, diluent gas, and environmental exposure. The parameters encompass thermo-chemical, fluid/droplet dynamics and environmental factors affecting ignition. Ignition delays as low as 3 ms were observed, one of the lowest using non-toxic hypergolic hybrid propellants in open-air. An overwhelming majority of conditions tested yielded <10 ms ignition delays and 100% ignition success. All conditions tested affected ignition to varying degrees with RGHP concentration, NaBH4 loading and drop impact velocity significantly affecting ignition. Further, contrary to expectations, exposing sanded fuel samples to humidity for a few h enhanced ignition instead of hampering it and exposure for 24 h did not lead to ignition degradation. Tests with diluent gases other than air (at atmospheric and elevated pressures) revealed that atmospheric oxygen played a negligible role in the reaction process. This proved that oxygen for the initial ignition event was obtained from RGHP decomposition, with atmospheric oxygen playing no role in ignition performance. Aside from demonstrating excellent ignition characteristics, our results further show a need to go beyond thermo-chemical properties and to consider aspects of ignition other than ignition delay in hypergolic propellant research to enable a complete understanding of the ignition processes. The comprehensive ignition characterization demonstrates the chosen propellant's ability to overcome ignition challenges in hybrid rockets and serves as a proof of concept for its further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号