首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 150 毫秒
1.
An inverse analysis for simultaneous estimation of the radiation phase function, single scattering albedo and optical thickness in natural waters, from the knowledge of the exit radiance measurements, is presented. A forward and an inverse model are utilized in our analysis. The forward model uses an analytical discrete-ordinates method for solving the radiative transfer equation and the inverse model contains an algorithm for least-squares estimation that is iteratively solved for retrieving the desired optical properties. The experimental data are simulated with synthetic data corrupted with noise. The results show that the optical properties, with the exception of the optical thickness, can be recovered with high accuracy, even for data with up to 10% noise.  相似文献   

2.
A polydisperse sphere model with the complex refractive index is employed to describe the propagation of light in biological tissue. The scattering coefficient, absorption coefficient and scattering phase function are calculated. At the same time, the inverse problem on retrieving the particles size distribution, imaginary part of the refractive index and number density of scatterers is investigated. The result shows that the retrieval scheme together with the Chahine algorithm is effective in dealing with such an inverse problem. It is also clarified that a group of parameters including the scattering coefficient, absorption coefficient and phase function are associated with another group including the refractive index, particle size distribution and number density of scatterers, which is a problem described in two different ways and the anisotropy factor is not an independent variable, but is determined by the phase function.  相似文献   

3.
The inverse filter is a serial cascade of filter elements with a transfer function that cancels the effect of the poles of the vocal tract transfer function on the acoustic waveform to reveal the underlying glottal volume velocity waveform. Inaccuracies in the glottal wave reconstruction derived from an all-zero inverse filter can be attributed to deviations of the vocal tract transfer function from an all-pole model. Presented is an analysis of the error stemming from the effect of the yielding vocal tract sidewalls on the vocal tract transfer function. Predictions about the resulting artifacts in the estimated glottal volume velocity are derived from an acoustic model. These predictions are confirmed by applying a linear predictive coding (LPC) inverse filter analysis method to vowels synthesized using a transmission line model of the vocal tract containing yielding sidewall parameters as well as natural productions of nonnasalized vowels.  相似文献   

4.
It is demonstrated by molecular dynamics simulations that liquids interacting via the Buckingham potential are strongly correlating, i.e., have regions of their phase diagram where constant-volume equilibrium fluctuations in the virial and potential energy are strongly correlated. A binary Buckingham liquid is cooled to a viscous phase and shown to have isomorphs, which are curves in the phase diagram along which structure and dynamics in appropriate units are invariant to a good approximation. To test this, the radial distribution function, and both the incoherent and coherent intermediate scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does not depend critically on the mathematical form of the repulsion being an inverse power law.  相似文献   

5.
Vector relationships between the fields on a certain surface confining an inhomogeneous three-dimensional volume and the fields inside this volume are obtained by the Stratton–Chu method developed for the case of homogeneous media. The vector relationships allow us to solve the direct and inverse problems of determining the fields inside an inhomogeneous medium given the field on its boundary. The vector equations take into acount the polarization changes of direct and inverse waves propagated in an inhomogeneous medium. In the case of a two-dimensional homogeneous medium, the vector equations reduce to the previously obtained scalar equations used in the approximation of spherical symmetry to describe the process of backward wave propagation during the atmospheric and ionospheric radio-occultation monitoring. It is shown that the Green's function of the scalar wave equation in an inhomogeneous medium should be used as the reference signal for solving the inverse problem of radio-occultation monitoring. This validates the method of focused synthetic aperture previously used for high-accuracy retrieval of the vertical refractive-index profiles in the ionosphere and atmosphere. In this method, the reference-signal phase was determined from a model which describes with sufficient accuracy the radiophysical parameters of a refracting medium in the region of radio-occultation sensing. The obtained equations can be used for the high-accuracy solving of inverse problems of radio-holographic sensing of the Earth's atmosphere and surface by precision signals from radio-navigation satellites.  相似文献   

6.
Using an algebraic approach, it is possible to obtain the temporal evolution wave function for a Gaussian wavepacket obeying the quadratic time-dependent Hamiltonian(QTDH). However, in general, most of the practical cases are not exactly solvable, for we need general solutions of the Riccatti equations which are not generally known. We therefore bypass directly solving for the temporal evolution wave function, and study its inverse problem. We start with a particular evolution of the wave-packet, and get the required Hamiltonian by using the inverse method. The inverse approach opens up a new way to find new exact solutions to the QTDH. Some typical examples are studied in detail. For a specific timedependent periodic harmonic oscillator, the Berry phase is obtained exactly.  相似文献   

7.
We introduce phase space concepts to describe quantum states in a disordered system. The merits of an inverse participation ratio defined on the basis of the Husimi function are demonstrated by a numerical study of the Anderson model in one, two, and three dimensions. Contrary to the inverse participation ratios in real and momentum space, the corresponding phase space quantity allows for a distinction between the ballistic, diffusive, and localized regimes on a unique footing and provides valuable insight into the structure of the eigenstates. Received 5 March 2002  相似文献   

8.
The inverse problem of the recovery of the poroelastic parameters of open-cell soft plastic foam panels is solved by employing transmitted ultrasonic waves (USW) and the Biot-Johnson-Koplik-Champoux-Allard (BJKCA) model. It is shown by constructing the objective functional given by the total square of the difference between predictions from the BJKCA interaction model and experimental data obtained with transmitted USW that the inverse problem is ill-posed, since the functional exhibits several local minima and maxima. In order to solve this problem, which is beyond the capability of most off-the-shelf iterative nonlinear least squares optimization algorithms (such as the Levenberg Marquadt or Nelder-Mead simplex methods), simple strategies are developed. The recovered acoustic parameters are compared with those obtained using simpler interaction models and a method employing asymptotic phase velocity of the transmitted USW. The retrieved elastic moduli are validated by solving an inverse vibration spectroscopy problem with data obtained from beam-like specimens cut from the panels using an equivalent solid elastodynamic model as estimator. The phase velocities are reconstructed using computed, measured resonance frequencies and a time-frequency decomposition of transient waves induced in the beam specimen. These confirm that the elastic parameters recovered using vibration are valid over the frequency range ofstudy.  相似文献   

9.
We study numerically the phase structure of a model of 3D gravity interacting with scalar fermions. We measure the 3D counterpart of the “string” susceptibility exponent as a function of the inverse Newton coupling . We show that there are two phases separated by a critical point around c2. The numerical results support the hypothesis that the phase structures of 3D and 2D simplicial gravity are qualitatively similar, the inverse Newton coupling in 3D playing the role of the central charge of matter in 2D.  相似文献   

10.
The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition function. The data contain errors (observation and background errors), hence there will be errors in the optimal solution. For mildly nonlinear dynamics, the covariance matrix of the optimal solution error can often be approximated by the inverse Hessian of the cost functional. Here we focus on highly nonlinear dynamics, in which case this approximation may not be valid. The equation relating the optimal solution error and the errors of the input data is used to construct an approximation of the optimal solution error covariance. Two new methods for computing this covariance are presented: the fully nonlinear ensemble method with sampling error compensation and the ‘effective inverse Hessian’ method. The second method relies on the efficient computation of the inverse Hessian by the quasi-Newton BFGS method with preconditioning. Numerical examples are presented for the model governed by Burgers equation with a nonlinear viscous term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号