首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Since there were few chaotic neural networks applicable to the global optimization, in this paper, we proposea new neural network model - chaotic parameters disturbance annealing (CPDA) network, which is superior to otherexisting neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the presentCPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escapefrom the attraction of a local minimal solution and with the parameter p1 annealing, our model will converge to theglobal optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper.The benchmark examples show the present CPDA neuralnetwork's merits in nonlinear global optimization.  相似文献   

2.
In this article, the thermal conductivity of concrete with vermiculite is determined and also predicted by using artificial neural networks approaches, namely the radial basis neural network and multi-layer perceptron. In these models, 20 datasets were used. For the training set, 12 datasets (60%) were randomly selected, and the residual datasets (8 datasets, 40%) were selected as the test set. The root mean square error, the mean absolute error, and determination coefficient statistics are used as evaluation criteria of the models, and the experimental results are compared with these models. It is found that the radial basis neural network model is superior to the other models.  相似文献   

3.
This paper discusses possible methods for the synthesis of informative features for the classification of signal sources in cognitive radio systems using artificial neural networks. A synthesis method based on the use of autoassociative neural networks is proposed. From the point of view of the classification of the signals, informativeness of synthesized features is estimated using a modified artificial neural network based on radial basis functions that contains an additional self-organizing layer of neurons that provide the automatic selection of the variance of basis functions and a significant reduction of the network dimension. It is shown that the use of autoassociative networks in the problem of the classification of signal sources makes it possible to synthesize the feature space with a minimum dimension while maintaining separation properties.  相似文献   

4.
《中国物理 B》2021,30(10):100505-100505
Many problems in science, engineering and real life are related to the combinatorial optimization. However, many combinatorial optimization problems belong to a class of the NP-hard problems, and their globally optimal solutions are usually difficult to solve. Therefore, great attention has been attracted to the algorithms of searching the globally optimal solution or near-optimal solution for the combinatorial optimization problems. As a typical combinatorial optimization problem, the traveling salesman problem(TSP) often serves as a touchstone for novel approaches. It has been found that natural systems, particularly brain nervous systems, work at the critical region between order and disorder, namely,on the edge of chaos. In this work, an algorithm for the combinatorial optimization problems is proposed based on the neural networks on the edge of chaos(ECNN). The algorithm is then applied to TSPs of 10 cities, 21 cities, 48 cities and 70 cities. The results show that ECNN algorithm has strong ability to drive the networks away from local minimums.Compared with the transiently chaotic neural network(TCNN), the stochastic chaotic neural network(SCNN) algorithms and other optimization algorithms, much higher rates of globally optimal solutions and near-optimal solutions are obtained with ECNN algorithm. To conclude, our algorithm provides an effective way for solving the combinatorial optimization problems.  相似文献   

5.
This paper presents a new method to synchronize different chaotic systems with disturbances via an active radial basis function (RBF) sliding controller. This method incorporates the advantages of active control, neural network and sliding mode control. The main part of the controller is given based on the output of the RBF neural networks and the weights of these single layer networks are tuned on-line based on the sliding mode reaching law. Only several radial basis functions are required for this controller which takes the sliding mode variable as the only input. The proposed controller can make the synchronization error converge to zero quickly and can overcome external disturbances. Analysis of the stability for the controller is carried out based on the Lyapunov stability theorem. Finally, five examples are given to illustrate the robustness and effectiveness of the proposed synchronization control strategy.  相似文献   

6.
In this study, an intelligent computing paradigm built on a nonlinear autoregressive exogenous (NARX) feedback neural network model with the strength of deep learning is presented for accurate state estimation of an underwater passive target. In underwater scenarios, real-time motion parameters of passive objects are usually extracted with nonlinear filtering techniques. In filtering algorithms, nonlinear passive measurements are associated with linear kinetics of the target, governing by state space methodology. To improve tracking accuracy, effective feature estimation and minimizing position error of dynamic passive objects, the strength of NARX based supervised learning is exploited. Dynamic artificial neural networks, which contain tapped delay lines, are suitable for predicting the future state of the underwater passive object. Neural networks-based intelligence computing is effectively applied for estimating the real-time actual state of a passive moving object, which follows a semi-curved path. Performance analysis of NARX based neural networks is evaluated for six different scenarios of standard deviation of white Gaussian measurement noise by following bearings only tracking phenomena. Root mean square error between estimated and real position of the passive target in rectangular coordinates is computed for evaluating the worth of the proposed NARX feedback neural network scheme. The Monte Carlo simulations are conducted and the results certify the capability of the intelligence computing over conventional nonlinear filtering algorithms such as spherical radial cubature Kalman filter and unscented Kalman filter for given state estimation model.  相似文献   

7.
This paper presents a study of neural networks for prediction of acoustical properties of polyurethane foams. The proposed neural network model of the foam uses easily measured parameters such as frequency, airflow resistivity and density to predict multiple acoustical properties including the sound absorption coefficient and the surface impedance. Such a model is quite robust in the sense that it can be used to develop models for many different classes of materials with different sets of input and output parameters. The current neural network model of the foam is empirical and provides a useful complement to the existing analytical and numerical approaches.  相似文献   

8.
李瑞国  张宏立  范文慧  王雅 《物理学报》2015,64(20):200506-200506
针对传统预测模型对混沌时间序列预测精度低、收敛速度慢及模型结构复杂的问题, 提出了基于改进教学优化算法的Hermite正交基神经网络预测模型. 首先, 将自相关法和Cao方法相结合对混沌时间序列进行相空间重构, 以获得重构延迟时间向量; 其次, 以Hermite正交基函数为激励函数构成Hermite正交基神经网络, 作为预测模型; 最后, 将模型参数优化问题转化为多维空间上的函数优化问题, 利用改进教学优化算法对预测模型进行参数优化, 以建立预测模型并进行预测分析. 分别以Lorenz 系统和Liu系统为模型, 通过四阶Runge-Kutta法产生混沌时间序列作为仿真对象, 并进行单步及多步预测对比实验. 仿真结果表明, 与径向基函数神经网络、回声状态网络、最小二乘支持向量机及基于教学优化算法的Hermite正交基神经网络预测模型相比, 所提预测模型具有更高的预测精度、更快的收敛速度和更简单的模型结构, 验证了该模型的高效性, 便于推广和应用.  相似文献   

9.
This paper presents an artificial intelligence approach for optimization of the operational parameters such as gas pressure ratio and discharge current in a fast-axial-flow CW CO2 laser by coupling artificial neural networks and genetic algorithm. First, a series of experiments were used as the learning data for artificial neural networks. The best-trained network was connected to genetic algorithm as a fitness function to find the optimum parameters. After the optimization, the calculated laser power increases by 33% and the measured value increases by 21% in an experiment as compared to a non-optimized case.  相似文献   

10.
开展了机器学习在翼型气动力计算和反设计方法中的应用研究,实现了在更大翼型空间范围内,人工神经网络的训练和优化,建立了翼型气动力计算模型,和给定目标压力分布的翼型反设计优化模型.作为机器学习领域兴起的研究热点,人工神经网络的研究工作不断深入,有研究者尝试将其应用于流体力学的学科范畴内.文章实现人工神经网络在翼型计算领域中应用的方法如下:首先通过Parsec参数化方法,围绕基准翼型构造了一定翼型空间范围的翼型库,利用XFOIL进行数值模拟,搭建了和翼型库具有一一映射关系的流场信息库.通过训练和优化神经网络,实现了基于此模型的快速、高可信度的翼型气动力预测,以及新型的翼型优化设计方法.通过自动化编程实现样本库的批量生成,实现了不同翼型空间的样本量下,神经网络的训练和优化过程.实验结果表明,在机器学习领域中,基于神经网络的翼型反设计模型的精确性高度依赖于训练样本量的大小和覆盖范围.   相似文献   

11.
《Physics letters. A》2006,357(3):218-223
With regards to the ferroresonance overvoltage of neutral grounded power system, a maximum-entropy learning algorithm based on radial basis function neural networks is used to control the chaotic system. The algorithm optimizes the object function to derive learning rule of central vectors, and uses the clustering function of network hidden layers. It improves the regression and learning ability of neural networks. The numerical experiment of ferroresonance system testifies the effectiveness and feasibility of using the algorithm to control chaos in neutral grounded system.  相似文献   

12.
In this paper, a novel optimization technique is proposed for designing photonic devices. The suggested approach relies on the use of radial bases function based artificial neural network (RBF-ANN) which shows an excellent performance in comparison with the conventional artificial neural network technique. The robustness of the suggested RBF-ANN approach is demonstrated through the numerical precision and fast convergence of the design cycle performed on a typical slanted rib waveguide polarization rotator, and ultra-flattened zero dispersion photonic crystal fiber.  相似文献   

13.
该文提出一种基于卷积神经网络直接对阵列超声检测原始信号进行缺陷类型识别的方法,该方法无需对超声回波原始信号进行特征提取.文章研究对比了不同卷积神经网络及其优化的识别性能.首先采用超声相控阵系统对不同试块上的平底孔、球底孔、通孔三种缺陷进行超声检测,然后利用LeNet5、VGG16和ResNet三种卷积神经网络对一维和二...  相似文献   

14.
基于RBF神经网络的图像融合复原方法研究   总被引:5,自引:2,他引:3  
提出了一种基于径向基函数(RBF)神经网络的多通道图像数据融合复原方法,研究了该方法在多光谱图像复原上的应用.将软竞争学习策略和自适应调整隐节点相结合对网络进行优化训练.利用多光谱卫星图像数据,对所提出的方法进行仿真实验.实验结果表明:该融合复原方法提高了复原图像的质量;改进后的学习算法能够保证学习准确度和较短的训练时间;实验还表明RBF神经网络的多通道复原和单通道复原、传统的维纳滤波及最大后验概率方法相比,在改善图像像质上具有明显的优越性.  相似文献   

15.
Several formulations and methods used in solving an NP-hard discrete optimization problem, maximum clique, are considered in a dynamical system perspective proposing continuous methods to the problem. A compact form for a saturated linear dynamical network, recently developed for obtaining approximations to maximum clique, is given so its relation to the classical gradient projection method of constrained optimization becomes more visible. Using this form, gradient-like dynamical systems as continuous methods for finding the maximum clique are discussed. To show the one to one correspondence between the stable equilibria of the saturated linear dynamical network and the minima of objective function related to the optimization problem, La Salle's invariance principle has been extended to the systems with a discontinuous right-hand side. In order to show the efficiency of the continuous methods simulation results are given comparing saturated the linear dynamical network, the continuous Hopfield network, the cellular neural networks and relaxation labelling networks. It is concluded that the quadratic programming formulation of the maximum clique problem provides a framework suitable to be incorporated with the continuous relaxation of binary optimization variables and hence allowing the use of gradient-like continuous systems which have been observed to be quite efficient for minimizing quadratic costs.  相似文献   

16.
 从工程实用角度出发,针对高压、高变比、低阻抗工作的脉冲变压器具有漏感大的特点,提出了要采用低阻抗集中参数非均匀电容脉冲形成网络的设计方法。采用传统设计和计算机模拟相结合,设计出了电压100kV,阻抗1.4Ω的6级集中参数 Blumlein型非均匀电容脉冲形成网络,缩短了输出脉冲前后沿,改善了脉冲波形,并成功地用于正在研制的500kV长脉冲加速器中。  相似文献   

17.
The quantum many-body problem(QMBP) has become a hot topic in high-energy physics and condensed-matter physics. With an exponential increase in the dimensions of Hilbert space, it becomes very challenging to solve the QMBP, even with the most powerful computers. With the rapid development of machine learning, artificial neural networks provide a powerful tool that can represent or approximate quantum many-body states. In this paper, we aim to explicitly construct the neural network representations of hypergraph states. We construct the neural network representations for any k-uniform hypergraph state and any hypergraph state,respectively, without stochastic optimization of the network parameters. Our method constructively shows that all hypergraph states can be represented precisely by the appropriate neural networks introduced in [Science 355(2017) 602] and formulated in [Sci. China-Phys.Mech. Astron. 63(2020) 210312].  相似文献   

18.
Yuan Ge 《中国物理 B》2022,31(11):110702-110702
A radial basis function network (RBF) has excellent generalization ability and approximation accuracy when its parameters are set appropriately. However, when relying only on traditional methods, it is difficult to obtain optimal network parameters and construct a stable model as well. In view of this, a novel radial basis neural network (RBF-MLP) is proposed in this article. By connecting two networks to work cooperatively, the RBF's parameters can be adjusted adaptively by the structure of the multi-layer perceptron (MLP) to realize the effect of the backpropagation updating error. Furthermore, a genetic algorithm is used to optimize the network's hidden layer to confirm the optimal neurons (basis function) number automatically. In addition, a memristive circuit model is proposed to realize the neural network's operation based on the characteristics of spin memristors. It is verified that the network can adaptively construct a network model with outstanding robustness and can stably achieve 98.33% accuracy in the processing of the Modified National Institute of Standards and Technology (MNIST) dataset classification task. The experimental results show that the method has considerable application value.  相似文献   

19.
朱林  赵晓斌 《应用声学》2015,23(4):13-13
针对氢粉碎过程中钕铁硼粉碎状态不可知,为有效预测合金的反应状态,提出了一种基于自组织特征映射(SOM)神经网络和径向基函数(RBF)神经网络结合构建的网络模型。在该模型中,SOM神经网络作为聚类网络,采用无教师学习算法对输入样本进行自组织分类,并将分类中心及其对应的权值向量传递给RBF神经网络,作为径向基函数的中心;RBF神经网络作为基础网络,采用高斯函数作为径向基函数实现从输入到隐含层的非线性映射,输出层则采用有教师学习算法训练网络的权值,从而实现输入层到输出层的线性映射。并以钕铁硼氢粉碎过程合金中氢含量为检测对象,运用上述方法在MATLAB平台上建立了合金中氢含量预测模型,并完成了仿真验证。  相似文献   

20.
王鹏 《气体物理》2019,4(3):23-33
文章研究了针对一种用于尖楔外形的嵌入式大气数据传感(flush air data sensing,FADS)系统的解算模型及精度.首先基于飞行包络及CFD数据建立了FADS系统的测压孔选取标准;然后基于径向基函数(radial basis function,RBF)的人工神经网络建模技术构建了FADS系统的网络解算模型;最后给出了模型的测试误差,分析了气动延时效应、位置误差等误差源模型对算法精度的影响,并给出了网络模型的预测精度.结果表明,针对尖楔外形测压孔配置特征,基于RBF的人工神经网络算法解算精度较好,攻角、侧滑角、Mach数及静压的网络输出预测值与真实值吻合较好,输出的测试误差(绝对值)分别小于0.25°,0.5°,0.05及250 Pa.结果同时表明神经网络建模技术在尖楔前体飞行器FADS系统中的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号