首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We report an angle-resolved photoemission spectroscopy study of electronic structures of Eu1−xLaxFe2As2 single crystals, in which the spin density wave transition is suppressed with La doping. In the paramagnetic state, the Fermi surface maps are similar for all dopings, with chemical potential shifts corresponding to the extra electrons introduced by the La doping. In the spin density wave state, we identify electronic structure signatures that relate to the spin density wave transition. Bands around M show that the energy of the system is saved by the band shifts towards high energies, and the shifts decrease with increasing doping, in agreement with the weakened magnetic order.  相似文献   

2.
Nitridation of GaAs (1 0 0) by N2+ ions with energy Ei = 2500 eV has been studied by Auger- and Electron Energy Loss Spectroscopy under experimental conditions, when electrons ejected only by nitrated layer, without contribution of GaAs substrate, were collected. Diagnostics for quantitative chemical analysis of the nitrated layers has been developed using the values of NKVV Auger energies in GaN and GaAsN chemical phases measured in one experiment, with the accuracy being sufficient for separating their contributions into the experimental spectrum. The conducted analysis has shown that nanofilm with the thickness of about 4 nm was fabricated, consisting mainly of dilute alloy GaAs1−xNx with high concentration of nitrogen x ∼ 0.09, although the major part of the implanted nitrogen atoms are contained in GaN inclusions. It was assumed that secondary ion cascades generated by implanted ions play an important role in forming nitrogen-rich alloy.  相似文献   

3.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

4.
The present paper reports the chemical shifts of the copper and cobalt K absorption discontinuities in the spinels CuCr2X4 (X = O, S, Se, Te), CoCr2X4 (X = O, S) and Cu0.5Co0.5Cr2?xRhxS4 (x = 0, 1, 2). The magnitudes of the chemical shifts show that copper is monovalent (except in CuCr2O4) and cobalt is bivalent in all these spinels. The valence structure for the spinels containing copper shows that the conductivity of such spinels (except CuCr2O4) is due to the holes in the anion p-orbitals. Levine's theory of ionicity has been extended to spinels which has made it possible to calculate the various bond parameters for the spinels CuCr2X4 and CoCr2X4. It has been found that a linear relation exists between the X-ray chemical shift ΔE and C, Eg, and fi, the ionic energy, total energy and ionici parameters respectively. This fact has been used to determine the various bond parameters in the spinels Cu0.5Co0.5Cr2?xRhxS4. It is found that in these spinels a natural balance of ionicity at the A site is maintained, when chromium is gradually replaced by rhodium.  相似文献   

5.
Chemical shifts of the X-ray LIII absorption discontinuities of rhenium in some of its binary and ternary compounds have been studied using a bent crystal X-ray spectrograph. The chemical shifts (ΔE) are found to be governed by the effective charges (q) on the absorbing ions, which have been calculated using Suchet's theory. For the compound ReCl5, however, the effective ionic charge cannot be calculated since the pentavalent radius of rhenium is not known. The ΔE, q plot has been used to determine the charges on the rhenium ions in ReCl5 as well as in two ternary compounds KReO4 and NaReO4. Our work has enabled us to determine the ionic radius of pentavalent rhenium.  相似文献   

6.
The present paper reports the chemical shifts of the K X-ray absorption discontinuities of copper and cobalt in ternary compounds. Relationships between the chemical shifts ΔE of the discontinuities and the various bond parameters (C, Eg, and fi) calculated from Levine's theory have been established. It is found that distinctly separate curves can be drawn for different valencies (Cu1+ and Cu2+, Co2+ and Co3+) of the absorbing ions. Making use of Levine's method for calculating bond charges, the effective charges q on the absorbing ions have been evaluated. The dependence of ΔE on q has been confirmed.  相似文献   

7.
We report on the enhanced electromechanical, magnetic and magnetoelectric properties of Bi1−xCaxFe1−xTixO3 solid solutions. The crystal structure of the x≈0.25 compounds are close to the rhombohedral-orthorhombic phase boundary, and the solid solutions are characterized by increased electromechanical properties due to the polarization extension near the polar-nonpolar border. The homogenous weakly ferromagnetic state is established at x>0.15 doping. The chemical doping shifts the magnetic transition close to room temperature, thus enlarging the magnetic susceptibility of the compounds. The solid solutions at the morphotropic phase boundary exhibit a nearly twofold increase in piezoelectric response, whereas the magnetoelectric coupling shows five times enhancement in comparison with the parent bismuth ferrite.  相似文献   

8.
Polycrystalline powders of the layered MnPS3 compound have been intercalated with K+ ions by ion-exchange to yield the K2xMn1 − xPS3 intercalate. X-ray photoelectron spectroscopy has been applied to learn about the electronic structure of this compound. In particular, we have studied the XPS spectra of the Mn 2p and 3p, P and S 2p, K 2p and 3p core levels and of the valence band region. The binding energies for various core levels of the elements present in this compound and their observed chemical shifts are analyzed. The data give evidence for the lack of non-equivalent atoms of K, Mn, P and S. Shake-up satellites are present at the Mn 2p and 3p core levels. The occurrence of such lines allows us to hypothesize that K2xMn1 − xPS3 is a large-gap insulating Mn compound. Confirmation that only an ion transfer accompanies the intercalation process is given from both the strong observed similarity with the corresponding XPS spectra in MnPS3 and the observed binding energy positions of the K 2p and 3p levels. As regards the valence band XPS spectrum, the observed analogies with the corresponding XPS spectra of the pure compound and of other K compounds have allowed us to single out two regions and their probable contributors.  相似文献   

9.
Ferroelectric bismuth vanadate Bi2VO5.5 (BVO) thin films have been successfully grown on p-type Si(100) substrate by using chemical solution decomposition (CSD) technique followed by rapid thermal annealing (RTA). The crystalline nature of the films has been studied by X-ray diffraction (XRD). Atomic force microscopy (AFM) was used to study the microstructure of the films. The dielectric properties of the films were studied. The capacitance-voltage characteristics have been studied in metal-ferroelectric-insulator-semiconductor (MFIS) configuration. The dielectric constant of BVO thin films formed on Si(100) is about 146 measured at a frequency of 100 kHz at room temperature. The capacitance-voltage plot of a Bi2VO5.5 MFIS capacitor subjected to a dc polarizing voltages shows a memory window of 1.42 V during a sweep of ±5 V gate bias. The flatband voltage (Vf) shifts towards the positive direction rather than negative direction. This leads to the asymmetric behavior of the C-V curve and decrease in memory window. The oxide trap density at a ramp rate of 0.2 V/s was estimated to be as high as 1.45×1012 cm−2.  相似文献   

10.
Chemical shifts in the X-ray K absorption edges of gallium and selenium in some of their binary compounds have been studied using a bent crystal X-ray spectrograph. The shifts are found to be governed by the effective charges on the absorbing ions, which have been calculated using Suchet's theory. For the compounds GaSe and GaTe, however, the effective ionic charges cannot be calculated for want of data on the divalent radius of gallium. The plot of the chemical shift, δE, against the theoretically calculated effective ionic charge, q, has been used to determine the charges on the ions in these two compounds. The effective charges, thus determined, provide information about the chemical bonding in the compounds.  相似文献   

11.
Electron energy peak shifts and peak shapes were determined in the ionization of H2O, D2O, H2S and SO2 by Ne(3P2) and He(21S, 23S) metastable atoms. The shifts are large, especially in ionization of H2O and D2O into the ionic ground state and are probably mostly due to chemical interaction during the collision.In a previous paper the electron energy distribution curves for ionization of CO, HCl, HBr, N2O, NO2, CO2, COS and CS2 by helium, neon and argon metastables and the characteristics of this ionization were described1. In this paper the series of triatomic molecules was extended to the molecules H2O, D2O, H2S and SO2. Because all these molecules have considerable dipole moments it could be expected that the peak shifts might be enhanced as compared with other triatomic molecules.  相似文献   

12.
Magnetic materials such as NixZn(1−x)Fe2O4 have resonant frequency in high frequency; therefore, they are more useful especially in microwaves. The NixZn(1−x)Fe2O4 was prepared by the chemical coprecipitation method using citrate precursors, and the fritless thick film was screen printed on alumina substrates. The composition-dependent permeability and permittivity in the high frequency 8–12 GHz are investigated. Using the overlay technique on Ag-thick-film patch antenna, the change in reflectance and transmittance has been measured. The NixZn(1−x)Fe2O4 thick film, when used as overlay on Ag-thick-film patch antenna, changes the resonance characteristics. The changes in resonance frequency, reflectance and transmittance have been used to calculate the permeability and permittivity of the thick film. Zinc-concentration-dependent changes are obtained.  相似文献   

13.
N-Propargyl imidazole has been synthesized by Knoevenagel condensation of benzaldehyde with propargyl bromide, assisted by microwave irradiation. Two alkaline-promoted clays (Li+- and Cs+-exchanged saponites) have been used as catalysts. The influence of several factors, such as irradiation power, irradiation time and alkaline promoter has been studied. The catalysts were characterized by XRD and chemical analysis. The basicity enhancement is directly connected to the presence of alkaline metal promoters in the saponite structure. In addition, a significant increase in the conversion values has been found when the reaction is activated by microwave irradiation, as compared with thermal activation. The yield to the N-propargyl imidazole shows a maximum for the Cs+-saponite at 750 W in only 5 min of microwave irradiation. This green and solvent-free procedure can be extended to the preparation of other N-substituted heterocycles, which could serve as precursors in the primary route to pharmaceutical compounds of interest.  相似文献   

14.
Raman scattering (RS) and field emission scanning electron microscopy (FESEM) have been used to extract microstructural information of RuO2 nanorods (NRs) and a two-phase system comprising NRs embedded in polycrystalline matrix deposited on different substrates by the metal-organic chemical vapor deposition method. The red shifts and asymmetric broadening of the Raman line shape for the NRs are analyzed by the spatial correlation model. The deduced spatial correlation length l is found to be much smaller than that of the average size L0 estimated from the FESEM images. The Raman features for the two-phase system can be resolved into two parts: a Lorentzian line shape feature corresponding to the polycrystallite at higher frequency side and an asymmetrically broadened NRs' signature located at lower frequency end. The volume fraction of NRs in the two-phase system can be determined from the analysis. These results demonstrate the significance of RS as a structural characterization method when used in conjunction with FESEM.  相似文献   

15.
For CuxZn1-xFe2O4 spinel ferrites (x = 0.2, 0.4, 0.6 and 0.8), EXAFS of Cu and Fe K-absorption edges have been studied employing LSS theory. With change in copper content, in the spinel system, the basic dependence of cation distribution on degree of inversion has been reported by plotting variation of bond distance “d” with EXAFS parameter ‘α’. This is further substantiated by plotting chemical shifts (ΔE) with EXAFS parameter ‘α’. The necessity of the determination of final state wavefunction for the knowledge of distribution of charge is stressed.  相似文献   

16.
A high-quality single crystal of Ce3Pt23Si11 has been grown using the Czochralski method. The crystal structure is presented and the chemical composition has been checked using an electron microprobe analyzer. Measurements of the electrical resistivity and magnetic susceptibility performed at low temperature show a ferromagnetic transition at Tc=0.44 K.  相似文献   

17.
A normal thiospinel CuIr2S4 exhibits a temperature-induced metal-insulator (M-I) transition around 230 K with structural transformation, showing hysteresis on heating and cooling. On the other hand, CuCr2S4 has the same normal spinel structure without the structural transformation. CuCr2S4 has been found to be metallic and ferromagnetic with the Curie temperature Tc~377 K. In order to see the effect of substituting Cr for Ir on the M-I transition, we have carried out a systematic experimental study of electrical and magnetic properties of Cu(Ir1−xCrx)2S4. The M-I transition temperature shifts to lower temperature with increasing Cr-concentration x and this transition is not detected above x~0.05. The ferromagnetic transition temperature decreases as x is decreased and the transition does not occur below x~0.20.  相似文献   

18.
An extensive study has been made of chemical shifts of the 63Cu resonance in a number of cuprous salts. The observed trend in chemical shifts for the cuprous halides is in disagreement with theoretical ionicity estimates of either Pauling or Phillips. This trend has been explained by taking into account the relative importance of π bonding for the different halides. On the basis of the present data, CuBr is the most suitable Knight shift reference compound. The measurements indicate μ = 2.2206 nm for 63Cu and μ = 2.3791 nm for 63Cu for reference moment, without diamagnetic correction.  相似文献   

19.
We report here the structural, magnetotransport and morphological studies of Sb-doped La2/3Ba1/3Mn1−xSbxO3 perovskite manganites. Pristine material La2/3Ba1/3MnO3 (LBMO) shows two insulator-metal (I-M) transitions in the electrical resistivity-temperature (ρ-T) behavior. While the higher temperature transition (TP1) at ∼340 K is reminiscent of the usual I-M transition in manganites, the lower temperature transition (TP2) at ∼250 K has been ascribed to the grain boundary (GB) effects arising out of the ionic size mismatch between the ions present at the rare-earth site (La3+ and Ba2+). With Sb-doping TP1 shifts to lower temperatures while TP2 remains invariant up to 3% and shifts to lower temperature for 5%. Room temperature electrical resistivity and the peak values also increase successively with Sb-doping. Scanning electron micrographs of the samples exhibit a gradual increase in their grain sizes with Sb indicating a gradual decrease in the GB density. Shift of TP1 with doping is explained on the basis of a competition between double-exchange and super-exchange mechanisms. The overall electrical resistivity increases and the shift in the electrical resistivity hump (TP2) with Sb-doping is found related to be gradually decreasing GB density and the ensuing lattice strain increase at the GBs. The intrinsic magnetoresistance (MR) gets suppressed and extrinsic MR gets enhanced with Sb-doping. At T>TP1, the electrical resistivity is found to follow the adiabatic polaron hopping model whereas the electron-magnon scattering is found to dominate in the metallic regime (T<TP1).  相似文献   

20.
Different compositions in the Lu2Si2O7-Sc2Si2O7 system have been synthesized following the ceramic method. All XRD patterns are compatible with the thortveitite structure (β-RE2Si2O7 polymorph). Unit cell parameters change linearly with composition, which indicates a complete solid solubility of Sc2Si2O7 in Lu2Si2O7. 29Si MAS NMR spectra show a decrease of the 29Si chemical shift with increasing Sc content. A correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Sc2Si2O7 and the results compare favourably with the values obtained experimentally. The FWHM values of the 29Si MAS NMR curves indicate a random distribution of Lu and Sc in the structure of the intermediate members. Finally, the IR study of the system confirms the solubility of Sc2Si2O7 in Lu2Si2O7, showing the splitting of several modes in the intermediate members and a linear shift of the frequency on going from one end-member to the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号