首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
We have prepared a series of polycrystalline manganites with the nominal compositions, La0.67Ba0.33Mn0.88Cr0.12O3/Agx (LBMCO/Agx) (x   is the mole fraction) with x=0x=0, 0.05, 0.1, 0.15, 0.2, 0.23, 0.27, 0.3, 0.35. The X-ray diffraction patterns show that the samples with x>0.05x>0.05 are two-phase composites. The Ag addition in LBMCO improves the properties of grain surfaces/boundaries and reduces the resistivity of the composites. For x=0.30x=0.30 sample, a minimum resistivity is obtained and a maximum room temperature magnetoresistance up to −54.5% was observed at 288 K, 1 T field. The room temperature TC and the reduced resistivity are responsible for the enhancement of room temperature MR.  相似文献   

2.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

3.
Samples La1−aAgaMnO3 (0.05?a?0.50) were sol–gel fabricated. A part of Ag was found to dissociate and run off the samples in sintering process when sintering temperature exceeds 700 °C, resulting in a composite of La1−xAgxMnO3 and MnO2/Mn2O3. The magnetic and transport properties of the composite have been studied. The sample with the nominal composition La0.7Ag0.3MnO3 was found to show the greatest magnetoresistance in the sample group. Detailed analysis on average Mn valence reveals a composite of (La0.985Ag0.015MnO3)0.776[(MnO2)0.590(Mn2O3)0.410]0.224. Its MR ratio at room temperature exceeds 24% under a field of 1.8 T. A conductivity leap has been observed around a=0.30. It suggests a kind of field-induced fluctuation in percolation in the samples investigated.  相似文献   

4.
A detailed investigation of the electrical resistivity of a series of monovalent (Ag) doped polycrystalline La1−xAgxMnO3 pellets with x ranging from 0.05 to 0.30 and measured over the temperature range between 10 and 350 K is reported. La1−xAgxMnO3 compounds have been prepared by a novel pyrophoric technique. XRD analysis of our samples indicates single phasic nature for samples with Ag content ≤0.15, while samples with higher Ag content (x≥0.2) show presence of both magnetic perovskite and non-magnetic Ag phases. A sharp insulator-metal transition with TMI close to room temperature arising out of the paramagnetic to ferromagnetic transition, and a large magneto-resistance (MR=∼16%) near TMI has been observed for all the Ag doped samples. Between TC(Tp1) and 350 K, all the samples show activated conduction following the Emin-Holstein theory of adiabatic small polaron hopping, while at lower temperatures, in the ferromagnetic regime resistivity appears to be governed by various electron scattering processes. Between 20 and 50 K, a distinct minimum for both H=0 and has been observed, which is explained in terms of inelastic scattering and electron-electron interactions.  相似文献   

5.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

6.
The La0.833K0.167MnO3:Ag2O and the La0.833K0.167MnO3:SrTiO3 samples are fabricated by the sol–gel method. The microstructure, magnetic and transportation properties have been systematically studied. X-ray diffraction patterns show that the La0.833K0.167MnO3:Ag2O (abbreviated as LKMO/Ag) sample is a two-phase composite and consists of a magnetic La0.833K0.167MnO3 (abbreviated as LKMO) perovskite phase and a nonmagnetic Ag metal phase, while the structure of the La0.833K0.167MnO3:SrTiO3 (abbreviated as LKMO/STO) sample is a homogeneous solid solution phase. Comparing with the pure LKMO sample, the room temperature magnetoresistance (MR) effect for the LKMO/Ag sample is enhanced significantly due to the addition of Ag metal. The MR ratio increases from ∼25% for the pure LKMO sample to 65% for the LKMO/Ag sample under a higher field of 5.5 T at 300 K. For the LKMO/STO sample, however, the room temperature MR effect is weakened dramatically and is almost close to zero due to the addition of SrTiO3 insulator. In the low temperature regime below the Curie temperature, the MR behaviors are different from that of the room temperature; that is, the MR effect is decreased for the LKMO/Ag sample and increased for the LKMO/STO sample with temperature decrease. In fact, the low-field (μ0H=0.5 T) MR decreases from 32% to 5% for the LKMO/Ag sample, while increasing from 0.07% to 25% for the LKMO/STO sample with decreasing temperature from 300 to 4 K. The relative change between the intrinsic and the extrinsic MR, and varied roles of the spin-polarized-tunneling and the spin-dependent scattering mechanisms in different temperature regimes are employed to interpret the anomalous transport behaviors.  相似文献   

7.
Polycrystalline Agx(Fe3O4)1−x films (x=0, 0.1, 0.2 and 0.3) have been prepared by the sol-gel method in combination of the spin-coating technique with a precursor solution containing polyvinyl alcohol (PVA) on fused quartz substrates. XRD analysis and SEM images indicate that the Fe3O4 grains are nearly spherical single-domain particles. The coercivities of the films are about 290 Oe for x=0.1 and 360 Oe for x=0.3, respectively, which are nearly the same as the magnetocrystalline anisotropic effective field HK of Fe3O4. At 300 K, the x=0.1 film has a maximal magnetoresistance of −8.7% at a magnetic field of 50 kOe and −3.5% at 8.8 kOe, while the pure Fe3O4 film is only −2.2% at 8.8 kOe. This enhancement of the MR can be attributed to the contribution from the spin-dependent scattering at the Ag-Fe3O4 interfaces as well as the spin-polarized tunneling at boundaries of Fe3O4 grains of the spin-polarized electrons. In addition, different MR behaviors for Ag-added Fe3O4 bulk polycrystalline samples and polycrystalline films are discussed.  相似文献   

8.
系统研究了xAg-La0.67(Ca0.65Ba0.35)0.33MnO3和xPd-La0.67(Ca0.65Ba0.35)0.33MnO3(xAg-LCBMO和xPd-LCBMO)两种复合体系的电特性和磁电阻特性. 结果发现,Pd和Ag的掺杂都引起电阻率的大幅降低和峰值电阻率温度的升高,这主要源于晶粒边界/表面良导体金属晶粒的析出. 另外,Pd和Ag的掺杂都引起室温磁电阻的大幅增强. 尤其是27%摩尔比的Ag掺杂诱导了高达70%的室温磁电阻,几乎是未掺杂母体LCBMO的10倍,而27%摩尔比的Pd掺杂诱导产生了更高的磁电阻,约170%. 磁电阻的大幅增强,与良导体金属掺杂引起的样品电阻率的降低有关. 另一方面,晶粒表面/边界Mn离子与Pd离子接近诱导Pd离子的自旋极化对磁电阻的增强起了重要的促进作用.  相似文献   

9.
Doubly substituted polycrystalline compound bulk samples of BaxAgyCa2.8Co4O9 were prepared via citrate acid sol-gel method followed by spark plasma sintering. The phase composition, orientation, texture and high temperature electrical properties were systematically investigated. The results showed that the orientation and the texture could be modified by altering ratio of Ba to Ag. The resistivity and the Seebeck coefficient of substituted samples were decreased by decreasing Ba/Ag ratio except for that of Ba0.1Ag0.1Ca2.8Co4O9 sample with lowest electrical resistivity (7.2 mΩ cm at 973 K), moderately high Seebeck coefficient (172 μV/K at 973 K) and improved power factor (0.42 mW/mK2 at 973 K).  相似文献   

10.
A series of bulk polycrystalline Ag-added Fe3O4 with a nominal composition, (Fe3O4)1−xAgx (x is molar fraction) with x=0, 0.1, 0.2, 0.3, 0.4, and 0.5 have been prepared by conventional solid-state reaction. X-ray diffraction patterns show that the pure Fe3O4 sample (x=0) has a single-phase inverse spinel structure, while the Ag-added samples are two-phase composites consisting of a ferrimagnetic Fe3O4 phase and a non-magnetic metal Ag phase. The bright-field transmission electron microscopy images exhibit that the samples are typical granular solids with a porosity of about 22%. The addition of Ag slightly increases the average grain size of the Fe3O4 phase and significantly enhances the MR effect of bulk polycrystalline Fe3O4 samples. Of all the samples the x=0.3 sample has a maximal MR of −5.1% at 300 K in a magnetic field of 1 T, and −6.8% in 5 T, which are approximately three times greater than the corresponding MR values (−1.8% at 1 T and −2.4% at 5 T) of the Fe3O4 sample. This enhancement of the MR can be attributed to the combination effect from the spin-dependent scattering at the interfaces between the Fe3O4 grains and the Ag granules and the spin-polarized tunneling at grain boundaries of Fe3O4 phase of the spin-polarized electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号