首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SiC films were grown by solid source molecular beam epitaxy (SSMBE) on Si (1 1 1) with different amounts of Ge predeposited on Si prior to the epitaxial growth of SiC. The samples were investigated with reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), and X-ray diffraction (XRD). The results indicate that there is an optimized Ge predeposition amount of 0.2 nm. The optimized Ge predeposition suppress the Si outdiffusion and reduce the formation of voids. For the sample without Ge predeposition, the Si outdiffusion can be observed in RHEED and the results of XRD show the worse quality of SiC film. For the sample with excess amount of Ge predeposition, the excess Ge can increase the roughness of the surface which induces the poor quality of the SiC film.  相似文献   

2.
The influence of a Bi surfactant layer on the structural and magnetic properties of Co/Cu multilayers grown onto Cu(1 1 0) buffer layer by RF magnetron sputtering has been studied. The results of X-ray diffraction revealed the initial deposition of a 2.0 Å-thick Bi layer onto the Cu buffer layer prior to the deposition of the Co/Cu multilayer yielded high-quality fcc-(1 1 0) oriented epitaxial films. The X-ray photoelectron spectra revealed that Bi was segregated at around the top of the surface. Therefore, Bi was concluded to be an effective surfactant to enhance the epitaxial growth of Co/Cu(1 1 0) multilayer. The maximum giant magnetoresistance and antiferromagnetic interlayer coupling ratios of the Co/Cu multilayers were increased by using the Bi surfactant layer.  相似文献   

3.
We observed a complete suppression of the incommensurate spin-density wave in thin Cr layers of a V/Cr multilayer in a temperature range from 550 K down to 2 K. The (110)-oriented V/Cr multilayer consisting of 30 nm thick Cr layers and 5 nm thick V layers was investigated by neutron and X-ray diffraction (XRD). From the XRD experiments we were able to determine that the epitaxial strain of the Cr layers in the V/Cr multilayer is about 90% larger than in earlier studied Fe/Cr(110) multilayers. That leads to a completely different magnetic phase diagram as revealed by neutron diffraction experiments. The existence of the commensurate antiferromagnetic structure in the Cr layers can be observed in the whole temperature range without a phase transition to an incommensurate spin-density wave at lower temperatures. In order to elucidate the proximity effects further we also performed experiments in an external magnetic field. Up to a field of 4 T we found no change in the magnetic structure of the Cr films whereas in earlier experiments on Fe/Cr(110) multilayers we could observe a strong perpendicular pinning of the Cr polarization to the Fe magnetization.Received: 28 August 2003, Published online: 8 December 2003PACS: 75.30.Fv spin-density waves - 75.70.-i magnetic properties of thin films, surfaces, and interfaces - 61.12.-q Neutron diffraction and scattering  相似文献   

4.
The electronic structure and magnetism of Cr/Sn and Fe/Cr/Sn/Cr multilayer systems with monolayer Sn are studied by means of a first-principles method. The calculated hyperfine field at Sn site is significantly large (∼20 T) in Cr/Sn multilayers, while the value is remarkably diminished (∼4 T) in the case of Fe/Cr/Sn/Cr multilayers. This trend of the hyperfine field is consistent with recently reported experimental results. It is found that the hyperfine field at Sn site is determined by the spin magnetic moment at the interface Cr site. The most important feature in the electronic structure of the multilayer systems is the existence of an interface state at the Cr interface layer near the Fermi energy region.  相似文献   

5.
We introduce nuclear resonant magnetometry as a means to record the magnetization curve of isotopically enhanced regions of a sample. It is based on nuclear resonant scattering with circularly polarized synchrotron radiation and the use of a nuclear resonant reference sample. We apply this approach to study the interlayer coupling in Fe/Cr(100) multilayers and to obtain a layer-specific magnetization curve. Our measurements provide experimental evidence for the existence of a nontrivial interlayer-coupling angle in Fe/Cr/Fe.  相似文献   

6.
The structural and magnetic properties of La/Fe multilayers were investigated by X-ray diffraction, RHEED, magnetometry and57Fe Mössbauer spectroscopy. Comparison is made with previous results obtained for Ce/Fe multilayers. Remarkably sharp interfaces are found, with roughness between 2 and 2.5 Å. The magnetic interface in the Fe sublayers resulting from the distribution of magnetic hyperfine fields distinctly exceeds the extension of the structural interface and points to a magnetic proximity effect. This is discussed in relation to a strong 3d-5d hybridization recently found in measurements of magnetic circular X-ray dichroism. Both the structural and magnetic La/Fe interface is less extended than the interface in Ce/Fe multilayers. Below a thickness of about 25 Å, the individual Fe layers grow in an amorphous structure on the La layers. In this case, Curie temperatures are below 200 K and the Fe-layer saturation magnetization is reduced up to 50%, and there is evidence of a non-collinear spin structure. It is argued that this mainly reflects the properties of pure amorphous Fe.  相似文献   

7.
Giant magnetoresistance of Co–Fe–B/Cu multilayers fabricated in the sputtering atmosphere, where the amount of oxygen impurity is varied, is discussed in connection with their interfacial roughness. The magnetoresistance (MR) ratio of Co–Fe/Cu multilayers is enhanced by up to 33% when the oxygen content is varied between 10 and 100 ppm of processing Ar gas. The enhancement of the MR ratio was due to the flattening effect of impurity oxygen on the multilayer interfaces: the root mean square roughness of the multilayer was decreased from 7.5 to 5 Å. With increasing boron content in Co–Fe layers, however, the enhancing effect of MR ratio by oxygen diminished and nearly vanished for 12 at%-B–(Co–Fe) case. The strong affinity of boron for oxygen is suggested as a probable mechanism.  相似文献   

8.
The antiferromagnetic coupling at the Fe/Cr interfaces, inferred from the orientation of the Cr magnetic moments, is used to estimate the magnetic disorder resulting from the interfacial roughness in Fe/Cr multilayers. A crossover from in-plane to out-of-plane orientation of Cr moments depends on the energy cost in either case: (i) to break the interfacial Fe–Cr antiferromagnetic coupling or (ii) having sites with frustrated Cr–Cr antiferromagnetic coupling in the Cr interlayers. A quantitative model of the magnetic frustration due to interfacial disorder in Fe/Cr multilayer systems is described. The step edge density, or terrace size, required to break the interfacial Fe–Cr coupling and destroy the Fe–Fe interlayer exchange coupling is estimated.  相似文献   

9.
Conversion electron Mössbauer spectroscopy (CEMS) and X-ray diffraction (XRD) have been used to investigate the structure of Pt/Fe and Cr/Fe multilayers deposited by magnetron sputtering. The Cr/Fe samples consisted of four samples prepared under Ar sputtering pressures of 1.3, 3.0, 5.0, and 10.0 mT, all with the same multilayer structure of 3.5 nm Cr/2.5 nm Fe, repeated 35 times onto c-Si wafer substrates. The quality of the interfaces between Cr and Fe is clearly degraded with increasing sputter pressure, as seen by changes in the relative intensities of four magnetic subspectra in the CEMS and the gradual appearance of a single-line resonance similar to Fe in solution in Cr. The low-angle XRD superlattice peaks also disappear with increasing sputter pressure, while the high-angle XRD shows a tendency for loss of the preferred (110) texture. Two films of Pt/Fe were deposited epitaxially onto MgO single crystals with bilayer periods of 1.3 nm and 2.6 nm and total thickness of 300 nm each. A transition from fcc-PtFe with near-perpendicular magnetic anisotropy to a bcc-Fe/fcc-PtFe mixture with in-plane magnetic texture is observed by CEMS for the factor of two increase in bilayer period.  相似文献   

10.
Ultrathin Ag (0.5 nm) pinning layers (APLs) were symmetrically inserted into [Fe/Pt] bilayers to introduce controllable defects on the interfaces between Ag and Fe/Pt multilayers. The highest coercivity 7700 Oe and remanent squareness 0.95 were obtained with five APLs. The large enhancement in coercivity (75% increment compared with that without APL) is due to the relative uniform defects that introduced pinning effects on the interfaces between the APLs and Fe/Pt multilayers. According to the distribution of angule- dependent coercivity of Fe/Pt multilayers without and with APLs, a tendency is suggested of weakened domain-wall motion while enhanced rotation of reverse domain mode.  相似文献   

11.
Morphologies of Cu(111) films on Si(111)-7×7 surfaces prepared at lowtemperature are investigated by scanning tunnelling microscopy (STM) andreflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu films are flat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rateproduces films with different morphologies, which is the result of Ostwald ripening.  相似文献   

12.
用真空蒸镀方法制备了[Fe/Cr],[Fe/Cr/Si]和[Fe/Si]多层膜.研究了Cr层、Si层和Cr+Si层厚度变化对层间耦合和磁电阻的影响.Fe层厚为2nm,Cr层厚度变化存在耦合振荡和巨磁电阻及其振荡.磁电阻值为14.6%(4.2K).在Cr层中加入一半Si层或全部由Si层替代,振荡消失,磁电阻减小到千分之几.根据掺Si层后多层膜的电阻率变化,认为Si加入使非磁层中自由电子数减少,随之极化效应也变弱,导致振荡消失,磁电阻大为降低 关键词:  相似文献   

13.
The magnetization distribution, its energetic characterization by the interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt multilayers are investigated using density functional theory combined with the direct method to determine phonon frequencies. It is found that ferromagnetic order between consecutive Fe layers is favoured, with the enhanced magnetic moments at the interface. The bilinear and biquadratic coupling coefficients between Fe layers are shown to saturate fast with increasing thickness of nonmagnetic Pt layers which separate them. The phonon calculations demonstrate a rather strong dependence of partial iron phonon densities of states on the actual position of Fe monolayer in the multilayer structure.  相似文献   

14.
We report on proximity effects of a Au buffer layer on the current-in-plane giant magnetoresistance effect (CIP-GMR) in high-quality, epitaxial Fe/Cr/Fe(001) trilayers. The lower Fe layer is grown in the shape of a wedge and allows simultaneous preparation of 24 GMR stripe-elements with different lower Fe thicknesses in the range from 13 to 14.5 ML. The layer-by-layer growth mode in combination with the small thickness variation gives rise to: (i) well-controlled roughness changes from stripe to stripe as confirmed by reflection high-energy electron diffraction (RHEED), and (ii) to a varying influence of the underlying Au buffer. The oscillatory roughness variation along the wedge yields an oscillatory GMR behavior as a function of Fe thickness and confirms the previous result that slightly increased interface roughness causes a higher GMR ratio. The proximity of the Au buffer to the GMR trilayer results in an increase of the GMR ratio with increasing Fe thickness. The latter effect is explained by spin-depolarization at the Fe/Au interface and in the bulk of the Au buffer.  相似文献   

15.
The structure of multilayers of ultrathin scandium (Sc) and chromium (Cr) films has been characterized by means of transmission electron microscopy (TEM). Face centered cubic Sc was found both in magnetron sputtered thin Sc layers on Si(0 0 1) and in Cr/Sc multilayers for soft X-ray mirrors. The single Sc and Cr layers are polycrystalline with randomly oriented grains, while Sc and Cr within the Cr/Sc multilayer show a strong [0 0 1] texture in the deposition direction. From high-resolution images the orientation-relationship at the Cr/Sc interfaces could be deduced as: Sc[110]//Cr[100] and Sc[010]//Cr[110], which was confirmed by image simulations.  相似文献   

16.
The B2 structure Fe50Co50 alloy is very attractive material as a large spin conductance asymmetry. In this study, we have tried to fabricate epitaxial Fe/Co superlattice with B2 structure. In order to investigate the relationship between the film structure and the substrate temperature, the films were prepared at different substrate temperature. The film structure of Fe/Co was evaluated by reflection high energy electron diffraction (RHEED). The in-plane lattice spacing gradually decreased to that of a bulk Fe50Co50 as increase in the number of layers. The B2 structure ordered phase of Fe/Co superlattice was successfully confirmed by RHEED and X-ray diffraction (XRD).  相似文献   

17.
We have used plots of the Auger amplitudes versus deposition time to investigate the growth mode of 3d-transition metals on noble metal (100) surfaces. The systems considered are Fe/Cu(100), Fe/Au(100), Co/Cu(100), and Cr/Ag(100). We find that: 1. The Auger plots consist of a succession of straight lines of constant length with sharp breaks in between, i.e. the growth mode is essentially layer-by-layer. 2. From the experimental data points a slight rounding off in the vicinity of the break points cannot be excluded, although a numerical analysis shows that the deviation from perfect layer-by-layer growth is less than 10% of a monolayer for all systems considered.  相似文献   

18.
The usefulness of Mössbauer spectroscopy for the investigation of magnetic multilayer systems is described. By applying 57Fe Mössbauer spectroscopy, the behavior of ultrathin magnetic layers, such as FCC-like Fe films on Cu(0 0 1), is studied. Position-specified (depth-selective) information is available by preparing samples in which monatomic 57Fe probe layers are placed at specific vertical positions, e.g. at interfaces or at the surface. As demonstrated for epitaxial chemically ordered Fe50Pt50 alloy films and polycrystalline nanostructured Tb/Fe multilayers, the Fe-spin structure can be determined directly, and a site-selective Fe-specific magnetic hysteresis loop can be traced in very-high-coercivity materials. For the studies of non-magnetic layers, on the other hand, hyperfine field observations by 197Au and 119Sn probes are worthwhile. Spin polarizations in Au layers penetrating from neighboring ferromagnetic 3D layers are estimated 197Au from Mössbauer spectra and are also studied by inserted 119Sn probes in Au/3D multilayers. In the Sn spectra for Cr/Sn multilayers, it was found that remarkably large spin polarization is penetrating into Sn layers from a contacting Cr layer, which suggests that Cr atoms in the surface layer have a ferromagnetic alignment.  相似文献   

19.
Within the framework of two-dimensional (2D) numerical micromagnetic simulations, the equilibrium magnetization configuration and the high-frequency (0.1–30 GHz) linear response of Co/Fe multilayers have been investigated in detail. Due to the perpendicular anisotropy of Co layers, a stripe domain pattern can develop through the whole multilayer, the characteristics of which depend on the magnitude of the perpendicular anisotropy, the respective thicknesses of Co and Fe layers and the number of Co/Fe bilayers in the stack. One of the most striking features associated with the layering effect is the ripening aspect of the static magnetization configuration across the multilayers which induces complicated dynamic susceptibility spectra including surface modes and volume modes strongly confined within the inner Fe layers. The effect of the cubic magnetocrystalline anisotropy of Fe layers and the influence of a nonuniform perpendicular magnetic anisotropy within the Co layers on the static and dynamic magnetic properties of Co/Fe multilayers are then analyzed quantitatively.  相似文献   

20.
This article describes the results of a study of Cu/Ni multilayer coatings applied on a monocrystalline Si(100) silicon substrate by the deposition magnetron sputtering technique. Composed of 100 bilayers each, the multilayers were differentiated by the Ni sublayer thickness (1.2 to 3 nm), while maintaining the constant Cu sublayer thickness (2 nm). The multilayer coatings were characterized by assessing their surface topography using atomic force microscopy and their mechanical properties with nano-hardness measurements by the Berkovich method. The tests showed that the hardness of multilayers was substantially influenced by the thickness ratio of Cu and Ni sublayers and by surface roughness. The highest hardness and, at the same time, the lowest roughness was exhibited by a multilayer structure with a Cu-to-Ni sublayer thickness ratio of 2:1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号