首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In this study, we investigated the microstructure, phase evolution and magnetic properties of nanogranular films of Sm-Co compounds processed by the sol-gel method. By controlling the compositional ratio of Sm:Co precursor concentration, nanogranular films consisting of three distinct hard magnetic phases namely, Sm2Co7, SmCo5 and Sm2Co17 with coercivity values of 1.78, 2.94 and 2.12 kOe, respectively, were obtained through this technique.  相似文献   

2.
Fe-Co films were electrodeposited on ITO glass substrates from the electrolytes with different molar ratio of Co2+/Fe2+ and different pH values (2.1, 2.9, 3.7, and 4.3) at 25 °C. The properties of Fe-Co alloy films depend on both Co2+ and Fe2+ concentrations in electrolyte and pH values was studied. The content of Co increases from 40% to 85% as the mole ratio of CoSO4/FeSO4 increasing from 0.50/0.50 to 0.90/0.10 in electrolyte and slightly decreases from 77% to 63% as the pH values increasing from 2.1 to 4.3. The X-ray diffraction analysis reveals that the structures of the films strongly depend on the Co content in the binary films. The surface morphologies of the films are influenced by the combined action of composition and phase structure. The saturation magnetization reaches a maximum value of 2974.03 emu/cm3 and coercivity reaches a minimum value of 42.72 Oe of the Fe0.30Co0.70. The saturation magnetization reaches a maximum values of 2974.03 emu/cm3 and coercivity reaches a minimum values of 42.72 Oe of the Fe0.30Co0.70 at pH = 2.9.  相似文献   

3.
Anisotropic (Sm,Pr)Co5/Co nanocomposite particles have been fabricated by chemical coating the 2 h ball milled (Sm,Pr)Co5 flakes with Co nanoparticles. The Co nanoparticles were synthesized with mean particle sizes in the range of 20-50 nm. The nanocomposite particles present [0 0 1] out-of-plane texture and improved magnetic properties, e.g., an enhanced remanent magnetization of 72 emu/g for (Sm,Pr)Co5/Co and 66 emu/g for (Sm,Pr)Co5. In addition, by using the 8 h ball milled powders (much smaller than the 2 h ball milled powders) as the starting materials, Co nanoparticles can also be successfully coated on the surface of the flakes. A plausible mechanism for the formation of Co nanoparticles on the surface of (Sm,Pr)Co5 flakes is discussed.  相似文献   

4.
The co-precipitation and solid state methods were used in the synthesis of barium hexaferrite (BaM). Phase pure BaM was obtained with 1, 2, 3, 5, 10, 15, 20 and 30 wt% cobalt oxide (Co3O4). The addition of Co2+/3+ ions to the BaM increased the permeability and magnetic loss tangent to a value of 3.5 at 5% and reduced to 1 at 30% doping. With increased Co doping, Ms was reduced from 87-58 emu/g, Mr increased from 11 to 40 emu/g with 3–5 wt% Co and 9 emu/g for 30% doping. Hc sharply increased from 540 to 2200 Oe with a reduction to 280 Oe at 10 K with increasing temperature to 300 K. Tc increased from 740 to 750 K for 30% Co doping. DTA–TGA studies of green body showed decarboxilation to occur at around 825 °C and the transformation of residual Co3O4 to Co2O3 at around 577 °C. The XRD data confirmed the Co ions substituting into Fe sites until a 10–15% doping level where the structure altered to W-type hexaferrite. The densities of the compounds varied with doping to a maximum of 4.45 g/cm3.  相似文献   

5.
Sm-Co based nanomagnetic material was synthesized by means of a Pechini-type sol-gel process. In this method, a suitable gel-precursor was prepared using respective metal salts and complexing agent such as citric acid. The gel-precursor was dried at 300 °C and then subjected to various reductive annealing temperatures: 350, 500 and 600 °C. The nanopowders so obtained were characterized for their structure, phase composition and magnetic properties. FT-IR studies on the gel-precursor showed the binding of metal cations with the citrate molecules in the form of metal-citrate complex. The gel-precursor, which was annealed at 350 °C showed the presence of both meta-stable cobalt carbide (Co2C, Co3C) and Co3O4 phases; while the sample annealed at 500 °C indicated the sign of SmCo5 phase. Upon increasing the reductive annealing temperature to 600 °C, crystalline phase such as fcc-Co and Sm2C3 were formed prominently. FE-SEM analysis revealed the change in sample morphology from spherical to oblate spheres upon increasing the annealing temperature. VSM measurements demonstrated ferromagnetic nature at room temperature for all the nanopowders obtained irrespective of their after reductive annealing temperature.  相似文献   

6.
The effect of crystal structures on texture induced by hot plastic deformation was studied for Sm-Co, Sm-Zr-Co, Sm-Zr-Co-Fe and Sm-Co-Fe-Mn nanocrystalline alloys with 9-22 at% Sm. Nanocrystalline precursors were obtained via high-energy ball milling and subsequent hot consolidation; deformation was carried out at 800-1150 °C. The analysis of X-ray diffraction and magnetic measurements showed that the degree of the axial [0 0 1] texture after deformation was negligible for the ordered 2:17 structure, but became increasingly noticeable for the disordered 2:17 (“1:7”), 1:5 and 2:7 structures. Because of interplay of several factors including the [0 0 1] texture, saturation magnetization and magnetocrystalline anisotropy, there was no universal trend in the hard magnetic properties with the Sm content. Optimum compositions for the maximum energy product varied from Sm11(Co, Fe, Mn)89 in the Sm-Co-Fe-Mn series to Sm11Zr2(Co, Fe)87 in the Sm-Zr-Co-Fe series to Sm17(Co, Fe)83 in the Sm-Co-(Fe) series. Iron substitution for cobalt strongly suppresses the 1:5 structure, whereas the Fe-free magnets based on the SmCo5 compound showed by far the highest room-temperature coercivity.  相似文献   

7.
Ni–Zn ferrites have been widely used in components for high-frequency range applications due to their high electrical resistivity, mechanical strength and chemical stability. Ni–Zn ferrite nanopowders doped with samarium with a nominal composition of Ni0.5Zn0.5Fe2−xSmxO4 (x=0.0, 0.05, and 0.1 mol) were obtained by combustion synthesis using nitrates and urea as fuel. The morphological aspects of Ni–Zn–Sm ferrite nanopowders were investigated by X-ray diffraction, nitrogen adsorption by BET, sedimentation, scanning electron microscopy and magnetic properties. The results indicated that the Ni–Zn–Sm ferrite nanopowders were composed of soft agglomerates of nanoparticles with a high surface area (55.8–64.8 m2/g), smaller particles (18–20 nm) and nanocrystallite size particles. The addition of samarium resulted in a reduction of all the magnetic parameters evaluated, namely saturation magnetization (24–40 emu/g), remanent magnetization (2.2–3.5 emu/g) and coercive force (99.3–83.3 Oe).  相似文献   

8.
SmCoxTi0.4 (x=6.6, 7.1, 7.6, 8.1) ribbons have been prepared by melt spinning at a wheel speed of 42 m/s, followed by annealing at 750 °C for 2 h. Both as-spun and as-annealed ribbons possess the disordered TbCu7-type (1:7) phase even when the Sm/(Co,Ti) atomic ratio deviates from 1/7. The c/a ratio increases with increasing Co concentration x, but the unit cell volume decreases. The Curie temperatures show above 700 °C, increasing from 707 °C for x=6.6 to 782 °C for x=8.1. The saturation magnetizations increase almost linearly with increasing Co content. The observed magnetic hardening is believed to arise from the high magnetocrystalline anisotropy of the 1:7 phase and the fine nanograin structure. The intrinsic coercivity of 9797 Oe has been obtained in the melt-spun SmCo7.1Ti0.4 ribbons.  相似文献   

9.
Bilayered Fe65Co35 (=FeCo)/Co films were prepared by facing targets sputtering with 4πMs∼24 kg. The soft magnetic properties of FeCo films were induced by a Co underlayer. Hc decreased rapidly when the Co underlayer was 2 nm or more. The films showed well-defined in-plane uniaxial anisotropy with the typical values of Hce=10 Oe and Hch=3 Oe, respectively. High frequency characteristics of the films show the films can work at 0.8 GHz with real permeability as high as 250.  相似文献   

10.
Cobalt oxides/carbon fibers (CoOx/CFs) composites were synthesized by thermal oxidation of cobalt coated carbon fibers (Co/CFs). The scanning electron microscopy images and X-ray diffraction pattern indicate that the layers are about 0.7 μm and composed of Co3O4 and CoO (CoOx), the preferred condition for preparation of CoOx/CFs composites is to anneal Co/CFs precursors at 350 °C for 3 h in air. The coercivity, saturation magnetization and residual magnetization of the CoOx/CFs composites are 464.8 Oe, 10.62 emu/g and 2.21 emu/g, respectively. The reflectivity of cobalt oxides coated carbon fibers (1.11-5.12 mm in thickness) is less than −10 dB over the working frequency range of 4.04-18.00 GHz and less than −20 dB over 11.54-14.77 GHz. The lowest reflectivity is −45.16 dB at 13.41 GHz when the thickness is 1.50 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号