首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of H2O on clean and K-covered Pt(111) was investigated by utilizing Auger, X-ray and ultra-violet photoemission spectroscopies. The adsorption on Pt(111) at 100–150 K was purely molecular (ice formation) in agreement with previous work. No dissociation of this adsorbed H2O was noted on heating to higher temperatures. On the other hand, adsorption of H2O on Pt(111) + K leads to dissociation and to the formation of OH species which were characterized by a work function increase, an O 1s binding energy of 530.9 eV and UPS peaks at 4.7 and 8.7 eV below the Fermi level. The amount of OH formed was proportional to the K coverage for θK > 0.06 whereas no OH could be detected for θ? 0.06. Dissociation of H2O occurred already at T = 100 K, with a sequential appearance of O 1s peaks at 531 and 533 eV representing OH and adsorbed H2O, respectively. At room temperature and above only the OH species was observed. Annealing of the surface covered with coadsorbed K/OH indicated the high stability of this OH species which could be detected spectroscopically up to 570 K. The adsorption energy of H2O coadsorbed with K and OH on Pt(111) is increased relative to that of H2O on Pt. The work function due to this adsorbed H2O increases whereas it decreases for H2O on Pt(111). The energy shifts of valence and O1s core levels of H2O on Pt + K as deduced from a comparison of gas phase and adsorbate spectra are 2.8–4.2 eV compared to ≈ 1.3–2.3 eV for H2O on Pt (111). This increased relaxation energy shift suggests a charge transfer screening process for H2O on Pt + K possibly involving the unoccupied 4a1 orbital of H2O. The occurrence of this mode of screening would be consistent with the higher adsorption energy of H2O on Pt + K and with its high propensity to dissociate into OH and H.  相似文献   

2.
We evaluate the adsorption of SO3 molecule on the Pt (1 1 1) surface using the first-principles calculations by a slab model with a periodic boundary condition. We find that there are four stable adsorption configurations on the Pt surface, where SO3 molecules are adsorbed above the three-fold fcc and hcp sites. In two of these configurations, S and two O atoms are bound to the Pt atoms, and in two other of them, all the three O atoms are bound to Pt surface atoms. Besides, it is found that molecular orbitals of SO3 and those of Pt surface are hybridized in the active metal d-bands region, that the localized molecular orbitals in SO3 are stabilized, and that the charge is transferred from Pt to S 3p by SO3 adsorption on Pt surface though the other interaction of S and O (bound to Pt) component with Pt is little. In addition, the bond between S and O bound to Pt become weak by SO3 adsorption on Pt surface because the charge polarization to O-Pt bond weakens the bond between S and O bound to Pt. This interaction is assumed to encourage the breakage of S-O bond.  相似文献   

3.
Oxygen adsorption and desorption were characterized on the kinked Pt(321) surface using high resolution electron energy loss spectroscopy, thermal desorption spectroscopy and Auger electron spectroscopy. Some dissociation of molecular oxygen occurs even at 100 K on the (321) surface indicating that the activation barrier for dissociation is smaller on the Pt(321) surface than on the Pt(111) surface. Molecular oxygen can be adsorbed at 100 K but only in the presence of some adsorbed atomic oxygen. The dominance of the v(OO) molecular oxygen stretching mode in the 810 to 880 cm?1 range indicates that the molecular oxygen adsorbs as a peroxo-like species with the OO axis parallel or nearly parallel to the surface, as observed previously on the Pt(111) surface [Gland et al., Surface Sci. 95 (1980) 587]. The existence of at least two types of peroxo-like molecular oxygen is suggested by both the unusual breadth of the v(OO) stretching mode and breadth of the molecular oxygen desorption peak. Atomic oxygen is adsorbed more strongly on the rough step sites than on the smooth (111) terraces, as indicated by the increased thermal stability of atomic oxygen adsorbed along the rough step sites. The two forms of adsorbed atomic oxygen can be easily distinguished by vibrational spectroscopy since oxygen adsorbed along the rough step sites causes a v(PtO) stretching mode at 560 cm?1, while the v(PtO) stretching mode for atomic oxygen adsorbed on the (111) terraces appears at 490 cm?1, a value typical of the (111) surface. Two desorption peaks are observed during atomic oxygen recombination and desorption from the Pt(321) surface. These desorption peaks do not correlate with the presence of the two types of adsorbed atomic oxygen. Rather, the first order low temperature peak is a result of the fact that about three times more atomic oxygen can be adsorbed on the Pt(321) surface than on the Pt(111) surface (where only a second order peak is observed). The heat of desorption for atomic oxygen decreases from about 290kJ/mol (70 kcal/mol) to about 196 kJ/mol (47 kcal/mol) with increasing coverage. Preliminary results concerning adsorption of molecular oxygen from the gas phase in an excited state are also briefly discussed.  相似文献   

4.
孙建平  周科良  梁晓东 《物理学报》2016,65(1):18201-018201
基于第一性原理的密度泛函理论研究了B,P单掺杂以及B,P共掺杂石墨烯对O,O_2,OH和OOH的吸附特性.通过分析吸附能、键长、态密度以及电荷转移,比较了不同掺杂对燃料电池氧还原反应(ORR)中间物吸附的影响,进而探讨了反应过程,并给出各步反应自由能的变化趋势.结果表明:B,P单掺杂石墨烯对各中间物的吸附能存在线性关系,掺P石墨烯吸附OOH的吸附能为3.26 eV,远大于掺B石墨烯的吸附能0.73 eV;掺P石墨烯较大的吸附能有利于中间物OOH中O—O键的断裂,掺B石墨烯吸附能小有利于中间物OH生成H2O脱附的反应发生;而B,P共掺杂石墨烯的吸附存在协同效应,具有更好的催化ORR的反应能力.  相似文献   

5.
Adsorption of CO and coadsorption of O and CO on Pt3Sn(1 1 1) was studied using periodic DFT calculations. Calculations were performed on Pt(1 1 1) by using the same set of parameters and their results were used as reference basis. The calculations showed that the most stable configuration with the minimum energy for coadsorption of CO and O is CO adsorbed atop Pt and O adsorbed on fcc Pt2Sn hollow site and that the decrease in the adsorption strength of the system at a total surface coverage of 0.5 ML is by 0.063 eV as a result of coadsorption, with respect to the adsorption of one species individually. Results show that the interaction between the adsorbed CO and O is short range on PtSn alloy, contrary to that on pure Pt, and this is mainly related to stronger Sn–O bonds compared to Pt–O bonds which eventually reduce the surface strain at the coadsorption structure. There is a pronounced effect of total surface concentration on the adsorption energy of coadsorbed species; the adsorption strength is not directly proportional to the surface coverage but is also related to the distribution of the coadsorbed species on the surface.  相似文献   

6.
First-principles calculations were performed to investigate magnetic phenomena in surface reactions involving O(2). We present two magnetized surface cases: (1) oxidation of paramagnetic Ag, and magnetic properties of the high coverage oxide phase, which correspond to a magnetic impurity superlattice on paramagnetic surfaces and (2) oxidation of ferromagnetic Pt, represented by the Pt layer on M (M = Fe and Co) relevant to the oxidation reduction reaction (ORR) on Pt, in relation to both fundamental and application interests. In the first case, we found that the dissociative adsorption of O(2), resulting in oxide phases in Ag(111), reveals interesting magnetic interactions. We note that the magnetic states are induced by the ferromagnetic superexchange interactions and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Specifically, the superlattice structures with short O-O distances have an effective ferromagnetic superexchange and RKKY interaction. In the second case, we found that a magnetic moment is induced on the Pt layer by the M substrate. The spin polarization of Pt-d states is due to hybridization with M-d states. The d-band center (ε(d)) of Pt (on M), is shifted downwards with respect to pure Pt. However, because of the spin polarization, the otherwise filled spin-down d(zz) orbital in paramagnetic pure Pt is shifted towards the Fermi level. This promotes π(z↑)-d(zz↓) interactions, which influences the O(2)-Pt interaction at O(2) far from the surface. Details and mechanisms of these two magnetic phenomena are discussed.  相似文献   

7.
The interaction of methanol with clean and oxygen-covered Pt(111) surfaces has been examined with high resolution electron loss spectroscopy (EELS) and thermal desorption spectroscopy (TDS). On the clean Pt(111) surface, methanol dehydrogenated above 140 K to form adsorbed carbon monoxide and hydrogen. On a Pt(111)-p(2 × 2)O surface, methanol formed a methoxy species (CH3O) and adsorbed water. The methoxy species was unstable above 170 K and decomposed to form adsorbed CO and hydrogen. Above room temperature, hydrogen and carbon monoxide desorbed near 360 and 470 K, respectively. The instability of methanol and methoxy groups on the Pt surface is in agreement with the dehydrogenation reaction observed on W, Ru, Pd and Ni surfaces at low pressures. This is in contrast with the higher stability of methoxy groups on silver and copper surfaces, where decomposition to formaldehyde and hydrogen occurs. The hypothesis is proposed that metals with low heats of adsorption of CO and H2 (Ag, Cu) may selectively form formaldehyde via the methoxy intermediate, whereas other metals with high CO and H2 chemisorption heats rapidly dehydrogenate methoxy species below room temperature.  相似文献   

8.
In this article, we report the precise control of the size, shape, and surface morphology of Au–Pt nanocatalysts (cubes, blocks, octahedrons, and dogbones) synthesized via a seed-mediated approach. Gold “seeds” of different aspect ratios (1–4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au–Pt nanocatalysts at a low temperature (40 °C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis, UV–Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was employed to evaluate the Au–Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction of direct methanol fuel cells. The results indicate the Au–Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au–Pt dogbones and Pt-black; however, its performance is affected by the presence of MeOH.  相似文献   

9.
本文采用阴离子化合物Y5Si3作为衬底,可以和石墨烯组成有效的氧还原催化剂. 反应热计算结果表明,阴离子材料可以促进氧还原反应中的决速步-氧气质子化的过程,从而增强石墨烯的氧还原能力. 电子结构计算表明体系较低的功函数(3.5 eV),良好的导电性以及从衬底到石墨烯的电荷转移都可以促进石墨烯的氧还原催化能力.  相似文献   

10.
XPS and LEED have been used to characterize the interaction of sputter-deposited Pt (maximum coverage <5 ML) with Nb-doped SrTiO3(0 0 1) surfaces prepared either by annealing in O2 and then UHV, or by chemical-etching in aqua regia. The annealed surface exhibits an ordered (1 × 1) LEED pattern, with additional diffraction spots and streaks indicating the presence of oxygen vacancies. Increasing Pt coverage results in the decrease of the observed Pt(4f7/2) binding energy and the uniform shift of the Sr(3d), Ti(2p) and O(1s) levels to smaller binding energies, as expected for Pt cluster growth and surface-to-Pt charge donation on an n-type semiconductor. The etched surface is disordered, and exhibits a hydroxylated surface with a contaminant C film of ∼23 ? average thickness. Pt deposition on the etched surface results in an immediate decrease in the intensity of the OH feature in the O(1s) spectrum, and a uniform shift of the Sr(3d), Ti(2p) and O(1s) levels to larger binding energies with increasing Pt coverage. The observed Pt(4f7/2) binding energy on the etched surface (∼72 eV) is independent of Pt coverage, and indicates substantial electronic charge donation from the Pt to surface hydroxyl species. The observation of band bending towards higher binding energies upon Pt deposition (behavior normally associated with p-type semiconductors) demonstrates that sub-monolayer quantities of adsorbates can alter metal/oxide interfacial charge transfer and reverse the direction of band bending, with important consequences for Schottky barrier heights and device applications.  相似文献   

11.
采用包含色散力校正的密度泛函理论(DFT-D)方法系统地研究了气体分子(O2, H2, NO, CO, CO2, SO2, H2S, H2O)在Co掺杂单层BN(Co-BN)表面的吸附, 分析了吸附小分子的几何结构, 吸附能, 电荷转移等情况. 结果表明: 1) CO等气体分子主要吸附在Co及其近邻六元环的顶位, 吸附结构的电荷转移表明掺杂原子Co对BN衬底的气敏特性有较好的调制作用; 2) 在Co-BN表面吸附的O2和CO较易被活化, 表明Co-BN可能是一种对CO氧化有较好催化活性的新型催化材料.  相似文献   

12.
基于密度泛函理论(density functional theory, DFT)的第一性原理方法研究了暴露不同原子终端的BiOBr{001}表面以及单原子Pt吸附于BiOBr{001}-BiO不同位置的几何构型、电子结构、光学性质和电荷转移.计算结果表明:BiOBr{001}面BiO终端暴露可诱导产生表面态且价带和导带能级向低能方向移动,光氧化性增强,尤其导带下方出现的表面态能级有助于光生电子-空穴对的分离和迁移,光吸收显著增强,且BiOBr{001}面BiO终端的功函数远低于贵金属Pt,有利于电荷定向转移.其次,单原子Pt吸附于BiOBr{001}-BiO为基底的表面,在禁带中间诱导产生杂质能级, Pt吸附于穴位时吸附能最小,光响应能力最好且电荷转移量最大,吸附于顶位和桥位时,形成开放性的贫电子区域,因此可预测穴位为Pt原子的吸附位点,预示其良好的降解有机污染物效果, Pt吸附于BiOBr{001}-BiO的顶位和桥位,具有潜在的CO_2还原或固氮等领域应用.  相似文献   

13.
The time scale of proton transfer between H(2)O and OH adsorbed on a Pt(111) surface was determined by a combination of laser-induced thermal desorption (LITD) and microscale x-ray photoelectron spectroscopy (micro-XPS). The patterned distribution OH+H(2)O/H(2)O/OH + H(2)O was initially prepared on the Pt(111) surface by the LITD method and the time evolution of the spatial distribution of H(2)O and OH was observed by the micro-XPS technique. From quantitative analyses based on a diffusion equation, we found two proton-transfer pathways with different time scales of 5.2+/-0.9 ns and 48+/-12 ns at 140 K, which were attributed to direct proton transfer to the neighbor site and H(3)O(+)-mediated transfer to the next-nearest site, respectively.  相似文献   

14.
Photoprocesses in systems produced by adsorption of NO and CO molecules on the Pt(111) and Ni(111) surfaces, as well as on the (111) surface of Pt-Ge alloy, is studied by the IR absorption spectroscopy, resonant multiphoton ionization, and UV photoelectron spectroscopy methods. The energy of photons varies between 2.3 and 6.4 eV. The character of the processes depends on the type of the metallic substrate. On the Pt(111) surface, NO molecules dissociate or are desorbed, depending on the degree of coverage. On the Ni(111) surface, the molecules only dissociate. Conversely, NO molecules adsorbed on the (111) surface of the Pt-Ge alloy are only desorbed from the surface. In the CO/Pt(111) and CO/Pt(111)-Ge systems, CO molecules adsorbed on on-top adsorption sites are desorbed under the action of the photons, while those occupying bridging adsorption sites change their properties insignificantly. A model of photoinduced processes is suggested. According to this model, the lifetime of a state excited by charge transfer between the valence band of the metal and the 2π-antibonding molecular orbital plays a decisive part in the occurrence of one or the other of these processes.  相似文献   

15.
采用基于密度泛函理论的第一性原理方法研究了非金属N原子和金属原子(M=Mo,Al,Co,Fe,Au和Pt)共掺杂石墨烯体系(M-GN4)的电子结构和表面活性.研究发现:单个金属原子掺杂的GN4体系表现出不同的稳定性,相比掺杂的Au原子,其它的金属原子都具有很高的稳定性( 6. 0 e V).掺杂的金属原子失去电荷显正电性将有助于调控气体分子的吸附特性. Mo-GN4和Al-GN4衬底对吸附的O_2表现出较高的灵敏性,单个CO和O_2分子在Co-GN4和Fe-GN4衬底的吸附能差别较小.此外,吸附不同的气体分子能够有效地调控M-GN4体系的电子结构和磁性变化.  相似文献   

16.
In this report, we extended the works of Rizzato et al. [Angew. Chem. Int. Ed. 49, 7440 (2010)] on the nature of O–H···Pt hydrogen bond in trans-[PtCl2(NH3)(N–glycine)]·H2O(1·H2O) complex, by computational study of O–H···Pt interaction in [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)], with emphasis on charge transfer effect in this interaction of platinum(II) and hydrogen atom. According to the crystallographic geometry reported by José María Casas et al., [NBu4][Pt(C6F5)3(8-hydroxyquinaldine)] possesses one O–H···Pt hydrogen bridging interaction, similar to the case in trans-[PtCl2(NH3)(N–glycine)]·H2O(1·H2O) complex. On the basis of topological criteria of electron density, we characterised this O–H···Pt interaction. Charge transferred between platinum(II) and σ*O–H orbital in this complex was calculated by using NBO method. The stabilised energy associated to charge transfer was estimated using a direct proportionality, that is 2–3 eV per electron transferred. Charge transfer effects in O–H···Pt hydrogen bonds were studied for these two complexes. Our results indicate that the interaction of O–H···Pt is closed–shell in nature with significant charge transfer, and that charge transfer effect is not negligible in the interaction of O–H···Pt. The second conclusion is different from the result of Rizzato et al.  相似文献   

17.
Ultraviolet photoelectron spectroscopy (UPS) has been used to study the chemisorption of CO, O2, and H2 on platinum. Three single crystal surfaces ((111), 6(111) × (100), and 6(111) × (111)) and two polycrystalline surfaces were studied. These studies yielded three important results. First, the most dominant change in the Pt valence band upon gas adsorption was a decrease in the height of the peak immediately below the Fermi level. This decrease was nearly identical for all three gases studied. Second, CO adsorption resulted in the formation of a resonance state ~8 eV below the Fermi level which was attributed to CO molecular orbitals. In contrast, no dominant resonance states were observed for adsorbed O or H. The lack of an O resonance state on platinum is in contrast to the results observed for O adsorbed on Fe and Ni and suggests important differences between the OPt chemisorption bond and the OFe and ONi chemisorption bonds. Finally, adsorption of CO at steps or defects led to a decrease in work function while its adsorption on terraces led to an increase in work function. For H, adsorption at steps led to an increase in work function while adsorption on terraces led to a decrease in work function. The adsorption of O led to an increase in work function on all of the surfaces studied.  相似文献   

18.
Theoretical analysis of ORR on Pt (111) was carried out with the combined technique of DFT calculation and the UBI-QEP method in order to understand the overall ORR pathways, behavior of H2O2 formation, and the impact of trifluoromethane sulfonic acid (CF3SO3H and TfOH) coverage, the alternative material of Nafion®, on the reactivity on the Pt surface. The ORR scheme consisting of elementary reactions was then modeled to determine the dominant path and the limiting step based on their activation energies. The results showed that the dominant ORR path included the H2O2 formation step and OOH formation step was limiting. When TfOH covered the Pt surface, it was revealed that the adsorption energy of an O2 molecule on Pt (111) was decreased due to the lower Fermi level and the d-band center, resulting in decreasing the activation energy of the limiting step. TfOH, however, could suppress the O2 adsorption on the Pt surface. In addition, with the TfOH coverage, it was indicated that the limiting step of ORR was shifted to H2O-production step which was after the H2O2 production, resulting in the enhancement of the H2O2 formation.  相似文献   

19.
Electrocatalysts for the oxygen reduction reaction (ORR) present some of the most challenging vulnerability issues reducing ORR performance and shortening their practical lifetime. Fuel crossover resistance, selective activity, and catalytic stability of ORR catalysts are still to be addressed. Here, a facile and in situ template‐free synthesis of Pt‐containing mesoporous nitrogen‐doped carbon composites (Pt‐m‐N‐C) is designed and specifically developed to overcome its drawback as an electrocatalyst for ORR, while its high activity is sustained. The as‐prepared Pt‐m‐N‐C catalyst exhibits high electrocatalytic activity, dominant four‐electron oxygen reduction pathway, superior stability, fuel crossover resistance, and selective activity to a commercial Pt/C catalyst in 0.1 m KOH aqueous solution. Such excellent performance benefits from in situ covalent incorporation of Pt nanoparticles with optimal size into N‐doped carbon support, dense active catalytic sites on surface, excellent electrical contacts between the catalytic sites and the electron‐conducting host, and a favorable mesoporous structure for the stabilization of the Pt nanoparticles by pore confinement and diffusion of oxygen molecules.  相似文献   

20.
Kinetic and spectral characteristics of luminescence and excitation of luminescence of magnesium phthalocyanine (MgPc) molecules adsorbed on silicon dioxide (SiO2) are studied. They are found to be affected by finely divided platinum (Pt) present at the surface and hydration. The deposition of a Pt catalyst on SiO2 leads to the formation of new centers. Adsorption of MgPc molecules at these centers increases the lifetime of excited states of the former. Luminescence of charge transfer complexes and the protonized form of phthalocyanine is detected at the platinized surface of silicon dioxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号