首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low energy KLL Auger electrons of neon emitted after EC-decay of 22Na have been investigated with a 4 eV instrumental resolution using an electrostatic spectrometer and a solid state radioactive source. This is the first experimental investigation of the KLL Auger spectrum of neon from the solid state. Relative intensities and energies of all resolved spectrum components were determined. Measured absolute energy of the dominant KL2L3(1D) transition was found to be 824.5(19) eV, i.e. about 20 eV higher than that obtained in experiments with free Ne atoms. Within the experimental uncertainties, no influence of solid state effects on relative intensities of the KLL transitions was found.  相似文献   

2.
Changes in the surface of an oxidized Cu(1 0 0) single crystal resulting from vacuum annealing have been investigated using positron annihilation induced Auger electron spectroscopy (PAES). PAES measurements show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 °C. The intensity then decreases monotonically as the annealing temperature is increased to ∼600 °C. Experimental probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons are estimated from the measured intensities of the positron annihilation induced Cu M2,3VV and O KLL Auger transitions. Experimental PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface, surface reconstructions, and electron-positron correlations effects. The effects of oxygen adsorption on localization of positron surface state wave function and annihilation characteristics are also analyzed. Possible explanation is proposed for the observed behavior of the intensity of positron annihilation induced Cu M2,3VV and O KLL Auger peaks and probabilities of annihilation of surface-trapped positrons with Cu 3p and O 1s core-level electrons with changes of the annealing temperature.  相似文献   

3.
The KLL Auger spectrum of Ni generated in the electron capture decay of radioactive 64Cu in a solid state matrix was measured for the first time using a combined electrostatic electron spectrometer adjusted to a 7 eV instrumental resolution. Energies and relative intensities of the all nine basic spectrum components were determined and compared with data obtained from X-ray induced spectra of metallic Ni and with theoretical results as well. Absolute energy of 6562.5 ± 1.3 eV (related to the Fermi level) measured for the dominant KL2L3(1D2) than a value obtained from the X-ray induced spectra which is probably caused by the effects of chemical bonding and physico-chemical environment. Moreover, it is higher by 20.4 eV (16??) than a prediction of the semi-empirical calculations by Larkins which indicates an influence of the ??atomic structure effect?? on absolute energies of the Auger transitions following the electron capture decay and, possibly, some imperfections in the calculations. Good agreement of the measured and predicted KL1L2(3P0/1P1) transition intensity ratios indicates perceptible influence of the relativistic effects on the KLL Auger spectrum even at Z = 28.  相似文献   

4.
M. Kato  K. Ozawa  S. Otani 《Surface science》2006,600(2):448-452
The electronic structure of α-Mo2C(0 0 0 1) has been investigated by angle-resolved photoemission spectroscopy utilizing synchrotron radiation. A sharp peak is observed at 3.3 eV in normal-emission spectra. Since the peak shows no dispersion as a function of photon energy and is sensitively attenuated by oxygen adsorption, the initial state of the peak is attributed to a surface state. Resonant photoemission study shows that the state includes substantial contribution of 4d orbitals of the Mo atoms in the second layer. The emissions with constant kinetic energies of 22 and 31 eV above the Fermi level (EF) are found in normal-emission spectra, and these emissions are interpreted as originating from the Mo N1N23V and N23VV Auger transitions, respectively.  相似文献   

5.
Angle resolved photoemission studies of the Si 2p and Si 1s core levels and the Si KL2,3L2,3 Auger transitions from SiO2/SiC samples are reported. Most samples investigated were grown in situ on initially clean and well ordered √3×√3 reconstructed 4H-SiC(0 0 0 1) surfaces but some samples were grown ex situ using a standard dry oxidation procedure. The results presented cover samples with total oxide thicknesses from about 5 to 118 Å. The angle resolved data show that two oxidation states only, Si+1 and Si+4, are required to explain and model recorded Si 2p, Si 1s and Si KLL spectra.The intensity variations observed in the core level components versus electron emission angle are found to be well described by a layer attenuation model for all samples when assuming a sub-oxide (Si2O) at the interface with a thickness ranging from 2.5 to 4 Å. We conclude that the sub-oxide is located at the interface and that the thickness of this layer does not increase much when the total oxide thickness is increased from about 5 to 118 Å.The SiO2 chemical shift is found to be larger in the Si 1s level than in the Si 2p level and to depend on the thickness of the oxide layer. The SiO2 shift is found to be fairly constant for oxides less than about 10 Å thick, to increase by 0.5 eV when increasing the oxide thickness to around 25 Å and then to be fairly constant for thicker oxides. An even more pronounced dependence is observed in the Si KLL transitions where a relative energy shift of 0.9 eV is determined.The relative final state relaxation energy ΔR(2p) is determined from the modified Auger parameter. This yields a value of ΔR(2p)=−1.7 eV and implies, for SiO2/SiC, a “true” chemical shift in the Si 2p level of only ≈0.4 eV for oxide layers of up to 10 Å thick.  相似文献   

6.
In/Pd and Pd/In/Pd thin films were prepared by thermal evaporation on the SiO2 substrate in a vacuum. The structural and optical properties of the films were investigated by means of X-ray diffractometry (XRD), Auger electron spectroscopy (AES) and spectroscopic ellipsometry (SE). Auger depth profile studies were performed in order to determine the composition of elements in the Pd-In systems. Interdiffusion of metals was detected at room temperature. Optical properties of Pd-In composite layers formed due to the interdiffusion were derived from ellipsometric quantities Ψ and Δ measured in the photon energy range 0.75-6.50 eV at different angles of incidence. The effective optical spectra show absorption peaks dependent on the composition of nonuniform films. The XRD patterns indicated formation of Pd1−xInx intermetallic phases in the samples.  相似文献   

7.
A Cu Kα1 sealed tube X-ray source ( = 8047.8 eV) and LiF(2 2 0) Johansson geometry monochromator crystal have been interfaced to a Scienta ESCA300 spectrometer for high energy XPS studies of materials, in particular for the measurement of Auger parameters associated with deep core levels in metallic alloys. The detailed arrangement of the source, monochromator and spectrometer combination is described, and factors affecting the overall intensity and resolution are discussed. The optimisation and characterisation of the system are also described. Several examples of Cu Kα1 excited survey spectra (Cr, Fe, stainless steel), deep core level spectra (Cr 1s, Fe 1s) and Auger spectra (Cr KLL, Cr LMM, Fe KLL) are presented, which illustrate the capability of the system. Auger vacancy satellites are identified in the Cr LMM spectrum. For a series of Cr–Si alloys measurements are reported of the change in the Cr Auger parameter on going from metal to alloy.  相似文献   

8.
The formation of doubly excited states of He atoms during collisions of He2+ ions with energies between 60 eV and 1 keV with a Ni(1 1 0) surface is studied via Auger electron spectroscopy. We observe that the electron spectra from autoionization of doubly excited states of 2s2, 2s2p, 2p2 configurations show a pronounced dependence on the coverage of the target surface with oxygen. For a controlled O2 adsorption on the Ni(1 1 0) surface we can explain the resulting changes in the electron spectra by the modification of the work function of the target surface. Thermal desorption and dissolution into the bulk of surface contaminations at elevated temperatures provides an alternative interpretation of recent work where the local electron spin polarization of a Ni(1 1 0) surface was deduced from changes in the electron spectra as function of target temperature.  相似文献   

9.
The X-ray photoelectron spectroscopy (XPS) study on as deposited as well as 500 °C annealed Co (400 Å)/Si thin film synthesized by electron beam evaporation technique under UHV conditions is reported here. The XPS measurements carried out on as deposited sample rule out the possibility of any phase formation at room temperature. Whereas in 500 °C annealed sample the Co-2p3/2 peak is observed at ∼778.6 eV binding energy position, where the peak expected due to CoSi2 resides. The Auger parameters were also calculated at each step of experiment because Auger parameter is always very sensitive to changes in the chemical state of the material. The recorded spectrum on annealed sample shows Auger parameter value of ∼1551.4 eV, which is different from that observed in the as deposited sample (∼1552.1 eV). The obtained results are analyzed and interpreted in terms of CoSi2 phase formation at the interface with annealing.  相似文献   

10.
Our (e,3-1e) measurements for studying the post-collision interaction (PCI) after electron impact inner shell ionization of argon were continued and completed at different energy conditions. Emitted LMM Auger electrons are detected in coincidence with the ionizing scattered electrons and the energy of the slow PCI inducer ejected electron was calculated from energy conservation. Particularly the effect of the very low energy (i.e. 0–5 eV) ejected electrons (strongly asymmetric energy sharing) is studied at 500 and 460 eV primary electron energies. In the latter case, the background caused by outer-shell electrons was measured by itself and then removed from the coincident spectrum. Nevertheless, the evaluation of PCI distorted Auger lines is still considerably disturbed by the resonant Auger electrons from the high Rydberg states, their (e,2e) contribution was estimated in the paper.  相似文献   

11.
Measurements of the positron annihilation-induced Auger electron (PAES) spectra from the Fe-Cu alloy surfaces with quantum-dot-like Cu nanoparticles embedded in Fe reveal a decrease of the Fe M2,3VV positron annihilation-induced Auger signal intensity and an enhancement of the Cu one for surfaces created by enriching the Cu content of the Fe-Cu alloy. These experimental results are analyzed by performing calculations of positron surface states and annihilation characteristics at the Fe(1 0 0) surface with quantum-dot-like Cu nanoparticles embedded in the top atomic layers of the host substrate. Estimates of the positron binding energy and annihilation characteristics reveal their strong sensitivity to the nanoparticle coverage. Theoretical core annihilation probabilities are compared with experimental ones estimated from the measured Auger peak intensities. The observed behavior of the Fe and Cu PAES signal intensities is explained by theoretical calculations as being due to trapping of positrons in the regions of Cu nanoparticles embedded in the top atomic layers of Fe.  相似文献   

12.
李智浩  曹亮  郭玉献 《物理学报》2017,66(22):224101-224101
利用基于同步辐射的近边X射线吸收精细结构谱(NEXAFS)和共振光电子谱(RPES)研究了苝四甲酸二酐分子(PTCDA)薄膜的电子结构.碳K边NEXAFS谱中能量小于290 eV的四个峰对应于PTCDA分子不同化学环境碳原子1s电子到未占据分子轨道的共振跃迁.RPES谱中观察到共振光电子发射和共振俄歇电子发射导致的共振峰结构,以及二次谐波激发的碳1s信号.根据电子动能对入射光能量的依赖性分别对三类峰结构进行了归属.同时,发现PTCDA分子轨道共振光电子峰的强度具有光子能量依赖性.这种能量选择性共振增强效应是由于PTCDA分子轨道空间分布差异导致的.共振俄歇峰主要源于高结合能(4.1 eV)分子轨道能级电子参与的退激发过程.明确RPES实验谱图中各个峰结构的起源有助于准确利用基于RPES的芯能级空穴时钟谱技术定量估算有机分子/电极异质界面处电子从分子未占据轨道到电极导带的超快转移时间.  相似文献   

13.
KLL Auger spectra excited by electrons with energies in the 30–35 keV range of Fe, Cu and Ge films were measured, using thin free-standing films. It was possible to obtain spectra with an energy resolution of about 1 eV. The observed spectra can not be described satisfactorily by just the multiplet splitting of the final state as calculated for an isolated atom. Additional features, due in part to intrinsic (shake satellites) and in part to extrinsic (energy loss of the escaping electron) processes formed a large fraction on the observed intensities. In particular a number of distinct satellite structures that are not predicted by the atomic Auger process are observed. For Fe and Cu the satellite peaks can be explained in terms of shake-up processes from the 3d5/2–4d5/2 states. Similar satellite structures observed in Ge are partly attributed to plasmon creation and partly to shake-up processes. It is demonstrated that both the thickness dependence of the observed intensity distributions and transmission electron energy loss measurements contain invaluable information for the interpretation of these spectra.  相似文献   

14.
Cluster-size-dependent binding energy (BE) shifts of Ni 2p3/2 spectra in Ni clusters with respect to bulk Ni metal have been studied as a function of Ni coverage on clean rutile TiO2(0 0 1) surfaces at room temperature. Auger parameter (AP) analysis of photoelectron spectra has been employed and revealed an obvious initial state contribution at the coverage of 0.5 monolayers (ML). The initial state effect was demonstrated to be strongly affected by the substrate and was assigned to a combination of eigenvalue shift in surface core-level shift (SCLS) and charge transfer between the metal clusters and substrates. The TiO2(0 0 1) surface stoichiometry was found to introduce different charge transfer behaviors. Our results experimentally present that the Ni clusters are charged positively on stoichiomtric TiO2 surface and less positively or even negatively on various reduced surfaces.  相似文献   

15.
A. Sulyok  M. Menyhard 《Surface science》2007,601(8):1857-1861
The steady-state surface compositions of the polar (O and Zn terminated) faces of ZnO{0 0 0 1} produced by low energy (0.3-2 keV) Ar+ ion bombardment were studied by Auger electron spectroscopy and electron energy loss spectroscopy. The alterations produced by the ion bombardment using different ion energies were monitored by calculating the intensity ratios of the low and high energy Zn Auger peaks (59 eV and 994 eV, respectively); Zn and O Auger peaks (59 eV and 510 eV, respectively). Based on the dependence of these ratios on the ion energy and termination of the surface, we could conclude that the stability of the Zn face is higher against the low energy argon ion bombardment-induced compositional changes than that of the O face.  相似文献   

16.
Surfaces of mineral cuprite prepared by fracture under UHV have been characterised by synchrotron XPS and near-edge X-ray absorption spectroscopy before and after exposure to ambient air. Before exposure of the cuprite, the Cu 2p photoelectron and Cu L2,3-edge absorption spectra were consistent with CuI with very little d9 character. Surface-enhanced O 1s spectra from the unexposed mineral revealed a surface species, with binding energy 0.95 ± 0.05 eV below the principal cuprous oxide peak, assigned to under-coordinated oxygen. A second surface species, with binding energy about 1 eV higher than the principal peak, was assigned to either hydroxyl derived from chemisorbed water vapour or surface oxygen dimers produced by restructuring of the cuprite fracture surface. The width of the principal O 1s peak was 0.66 ± 0.02 eV. The observed Cu L3- and O K-edge absorption spectra were in good agreement with those simulated for the cuprite structure. After exposure of the fracture surface to ambient air, the low binding energy O 1s surface species was barely discernible, the original high binding energy O 1s surface species remained of comparable intensity, new intensity appeared at an even higher (∼1.9 eV) binding energy, and the Cu L2,3-edge spectrum indicated the presence of CuII, consistent with the formation of a thin surface layer of Cu(OH)2.  相似文献   

17.
H.Y. Ho 《Surface science》2006,600(5):1093-1098
Low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) were used to study the growth and the structural evolution of Ni/Co/Pt(1 1 1) following high-temperature annealing. From the oscillation of the specular beam of the LEED and Auger uptake curve, we concluded that the growth mode of thin Ni films on 1 ML Co/Pt(1 1 1) is at least 2 ML layer-by-layer growth before three-dimensional island growth begins. The alloy formation of Ni/1 ML Co/Pt(1 1 1) was analyzed by AES. The temperature for the intermixing of Ni and Co layers in the upper interface without diffusing into the bulk of Pt is independent of the thickness of Ni when a Co buffer is one atomic monolayer. After the temperature was increased, formations of Ni-Co-Pt alloy, Ni-Pt alloy and Co-Pt alloy were observed. The temperature required for the Ni-Co intermixing layer to diffuse into Pt bulk increases with the thickness of Ni. The interlayer distance as a function of annealing temperature for 1 ML Ni/1 ML Co/Pt(1 1 1) was calculated from the I-V LEED. The evolution of LEED patterns was also observed at different annealing temperatures.  相似文献   

18.
We present and discuss X-ray absorption spectroscopy and resonant photoemission measurements on Fe nanostructures self-assembled on MgO(0 0 1). For Fe coverages below 1 ML equivalent we measured an increase of the Fe L23 branching ratio and changes in the splitting, widths and relative intensities of the different final states in the L3M23M23 resonant Auger peak. Scanning tunnelling microscopy indicates that the average lateral dimensions of the self-aggregated structures decrease with decreasing Fe amount, from 12 nm at 15 ML nominal Fe amount to 5 nm at 2 ML Fe. This observation allows to interpret the observed changes in the 3d band electronic properties in terms of the evolution of the Fe local atomic coordination from a bulk-like situation to a configuration where low dimensionality effects are significant.  相似文献   

19.
Solid-state effects in the creation and decay of K 2p core excitations in thin KF films on Cu(1 0 0) surface have been studied in resonant Auger spectra, excited using synchrotron radiation. The spectra of films of various thickness starting from a single monolayer were measured.The photoabsorption spectra reveal crystal field splitting already at film thickness of about 1 monolayer. The Auger decay spectra of the K 2p−13d core excitations in films of thickness up to 2 monolayers exhibit a band characteristic of the decay of core ionised states, showing that the excited electron delocalises into substrate before the core hole decays. In thicker films the coexistence of the decay of excited states in the bulk of the KF crystalline film and of ionised states at the KF-metal interface is observed, indicating that the charge transfer probability from the upper layers of the film into the metallic substrate is strongly reduced.  相似文献   

20.
Auger electron spectra of the transition metals Cr, Mn, Fe, Co and Ni as well as their oxides have been investigated in the energy range between 0–100 eV. In each case of the clean metal surface the observed spectrum consists essentially of one Auger line identified asM 2,3 VV transition. After oxidation a line doublet is observed revealing two transitions instead of one. Additional new Auger peaks appear in the low energy range between 0–30 eV. The “splitting” of the Auger line can be explained as resulting from aM 2,3 V dVd and aM 2,3 V pVp transition. The latter is characteristic for the compound and can in a simple way be interpreted as a cross transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号