首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于腔QED的多用户间的多原子量子信道的建立   总被引:3,自引:0,他引:3       下载免费PDF全文
赵晗  周小清  杨小琳 《物理学报》2009,58(9):5970-5977
提出基于腔QED技术的多用户间的多原子W态和GHZ态量子信道的建立方案.在量子网络的空闲时段,各个用户和量子交换机共享EPR对.量子交换机通过原子和腔场的相互作用将两个EPR对制备成W态,再与另一个EPR对进行纠缠交换,经过直接测量后为用户建立三原子W态量子信道;同时讨论了四用户间的W态量子信道的建立方案.量子交换机对三个EPR对进行纠缠交换,将三个原子同时与腔场作用,经过直接测量后为用户建立三原子GHZ态量子信道;并将此方法推广到N个用户间的GHZ态量子信道的建立. 关键词: 腔QED 量子信道 量子交换机 纠缠交换  相似文献   

2.
Entanglement degradation caused by the Unruh effect is discussed for the tripartite GHZ or W states constructed by modes of a non-interacting quantum field viewed by one inertial observer and two uniformly accelerated observers. For fermionic states, the Unruh effect even for infinite accelerations cannot completely remove the entanglement. However, for the bosonic states, the situation is different and the entanglement vanishes asymptotically. Also, the entanglement is studied for the bipartite subsystems. While for the GHZ states all the bipartite subsystems are identically disentangled, for the W states the bipartite subsystems are somewhat entangled, though, this entanglement can be removed for appropriately accelerated observers. Interestingly, logarithmic negativity as a measure for determining the entanglement of one part of the system relative to the other two parts, is not generally the same for different parts. This means that we encounter tripartite systems where each part is differently entangled to the other two parts.  相似文献   

3.
The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example of the case in which the subsystems interact with each other; we show that decoherence does not solve the measurement problem precisely because the reduced state of the measuring apparatus is not its quantum state. Second, the non-interacting case is illustrated in the context of no-collapse interpretations, in which we show that certain well-known experimental results cannot be accounted for due to the fact that the reduced states of the measured system and the measuring apparatus are conceived as their quantum states. Finally, we prove that reduced states are a kind of coarse-grained states, and for this reason they cancel the correlations of the subsystem with other subsystems with which it interacts or is entangled.  相似文献   

4.
宗晓岚  杨名 《物理学报》2016,65(8):80303-080303
量子纠缠是量子信息的重要物理资源. 然而当量子系统与环境相互作用时, 会不可避免地产生消相干导致纠缠下降, 因此保护纠缠不受环境的影响具有重要意义. 振幅衰减是一种典型的衰减机制. 如果探测环境保证没有激发从系统中流出, 即视为对系统的一种弱测量. 本文基于局域脉冲序列和弱测量, 提出了一种可以保护多粒子纠缠不受振幅衰减影响的有效物理方案, 保护的对象是在量子通信和量子计算中发挥重要作用的Cluster态和Maximal slice态.  相似文献   

5.
Yong-Ting Liu 《中国物理 B》2022,31(5):50303-050303
We present a self-error-rejecting multipartite entanglement purification protocol (MEPP) for N-electron-spin entangled states, resorting to the single-side cavity-spin-coupling system. Our MEPP has a high efficiency containing two steps. One is to obtain high-fidelity N-electron-spin entangled systems with error-heralded parity-check devices (PCDs) in the same parity-mode outcome of three electron-spin pairs, as well as M-electron-spin entangled subsystems (2≤M <N) in the different parity-mode outcomes of those. The other is to regain the N-electron-spin entangled systems from M-electron-spin entangled states utilizing entanglement link. Moreover, the quantum circuits of PCDs make our MEPP works faithfully, due to the practical photon-scattering deviations from the finite side leakage of the microcavity, and the limited coupling between a quantum dot and a cavity mode, converted into a failed detection in a heralded way.  相似文献   

6.
In this paper, we study quantum correlation in separable systems termed quantum dissonance [K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)]. Firstly, we study the emergence of quantum dissonance between two atoms prepared in uncorrelated states and coupled to a single-mode thermal field. We show that even for situations when the thermal field cannot entangle the two atoms, it can nevertheless induce quantum dissonance between them. Then, we investigate the dynamics including the transfer in both Markovian and non-Markovian regimes of quantum dissonance due to dissipation modeled by two independent subsystems each of which consists of a leaky cavity containing a two-level atom and surrounded by a reservoir. The two subsystems possess some amount of atomic quantum dissonance at the beginning but do not interact with each other by any means later on. We show that the quantum dissonance can be transferred among the composite subsystems, but the way it evolves and is transferred may be very different compared to that of entanglement. Finally, we present an efficient method to refrain the unwanted transfer of quantum dissonance from interested systems to reservoirs.  相似文献   

7.
连续变量无条件纠缠交换 --纠缠态的量子离物传送   总被引:1,自引:0,他引:1  
利用自行设计的两台非简并光学参量放大器,获得了一对具有经典相干性且量子起伏相互独立的连续变量纠缠态光场,并用它完成了连续变量的无条件纠缠交换,即纠缠态的量子离物传送.通过联合贝尔态探测与纠缠塌缩,使两个初始不纠缠而又从未发生过直接相互作用的光场产生了量子纠缠,其正交振幅和位相分量的量子起伏关联方差被直接测量,其测量值分别低于散离噪声极限1.23dB和1.12dB.理论计算与实验结果基本符合.  相似文献   

8.
远程制备双原子纠缠态   总被引:1,自引:1,他引:0  
陈美锋  马宋设 《光子学报》2008,37(1):188-191
提出一种远程制备双原子纠缠态的方案,该方案基于两个原子与单模腔场的同时非共振相互作用.由于双粒子纠缠态比三粒子纠缠态容易制备,方案用两对双原子纠缠态作为量子通道.Alice 拥有的两个相同原子同时与一单模腔场非共振相互作用.Alice已知她要制备的纠缠态,她选择适当的相互作用时间、测量她所拥有的两个原子并通过经典通道通知Bob.Bob引入一个相同的辅助原子和一个单模腔场来实现方案.方案对腔场状态和腔损耗不敏感,基于当前的腔QED 技术,方案能在实验上实现.该方案有望在量子信息过程中有重要的应用价值.  相似文献   

9.
We propose a scheme in which entanglement can be transferred from atoms (discrete variables) to entangled states of cavity fields (continuous variables). The cavities play the role of a kind of quantum memory for entanglement, in such a way that it is possible to retrieve it back to the atoms. In our method, two three level atoms in a lambda configuration, previously entangled, are set to interact with single mode cavity fields prepared in coherent states. During the process, one e-bit of entanglement may be deposited in the cavities in an efficient way. We also show that the stored entanglement may be transferred back to flying atoms.  相似文献   

10.
We propose a novel entanglement concentration protocol (ECP) for nonlocal N-electron systems in a partially entangled W state, resorting to an ancillary single electron and controlled-not gates. Compared with other ECPs for W states, our ECP has some illustrious advantages. First, each N-electron entangled system can be used to complete the entanglement concentration with only an ancillary electron. It does not require that there are two copies of N-electron entangled systems in each round of entanglement concentration. Second, only one of the users, say Charlie, needs to perform the protocol, while all parties should perform the same operations as Charlie in other ECPs for W-class states. Third, only Charlie asks other parities to retain or discard their electrons, and they do not need to check their measurement results, which greatly simplifies the complication of classical communication. Fourth, our ECP has a higher success probability than other ECPs for W-class states as its success probability equals to the limit value of an ECP for a W state in theory. These advantages maybe make our ECP more useful in practical applications.  相似文献   

11.
We derive N-particle Bell-type inequalities under the assumption of partial separability, i.e., that the N-particle system is composed of subsystems which may be correlated in any way (e.g., entangled) but which are uncorrelated with respect to each other. These inequalities provide, upon violation, experi-mentally accessible sufficient conditions for full N-particle entanglement, i.e., for N-particle entanglement that cannot be reduced to mixtures of states in which a smaller number of particles are entangled. The inequalities are shown to be maximally violated by the N-particle Greenberger-Horne-Zeilinger states.  相似文献   

12.
Entanglement purification of gaussian continuous variable quantum states   总被引:1,自引:0,他引:1  
We describe an entanglement purification protocol to generate maximally entangled states with high efficiencies from two-mode squeezed states or from mixed Gaussian continuous entangled states. The protocol relies on a local quantum nondemolition measurement of the total excitation number of several continuous variable entangled pairs. We propose an optical scheme to do this kind of measurement using cavity enhanced cross-Kerr interactions.  相似文献   

13.
We devise a protocol in which general nonclassical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system and local ancillae in our protocol. We emphasize the key role of state mixedness in maximizing nonclassicality: Mixed entangled states can be arbitrarily more nonclassical than separable and pure entangled states.  相似文献   

14.
15.
The limitation on the sharing of entanglement is a basic feature of quantum theory. For example, if two qubits are completely entangled with each other, neither of them can be at all entangled with any other object. In this paper we show, at least for a certain standard definition of entanglement, that this feature is lost when one replaces the usual complex vector space of quantum states with a real vector space. Moreover, the difference between the two theories is extreme: in the real-vector-space theory, there exist states of arbitrarily many binary objects, “rebits,” in which every rebit in the system is maximally entangled with each of the other rebits.  相似文献   

16.
Initially Einstein, Podolsky, and Rosen (EPR) and later Bell shed light on the non-local properties exhibited by subsystems in quantum mechanics. Separately, Kochen and Specker analyzed sets of measurements of compatible observables and found that a consistent coexistence of these results is impossible, i.e., quantum indefiniteness of measurement results. As a consequence, quantum contextuality, a more general concept compared to non-locality, leads to striking phenomena predicted by quantum theory. Here, we report neutron interferometric experiments which investigate entangled states in a single-particle system: entanglement is, in this case, achieved not between particles, but between degrees of freedom i.e., between spin, path, and energy degrees of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter in the interferometer allow an experimental verification of the violation of a Bell-like inequality. In addition, state tomography, tomographic analysis of the density matrix of a quantum system, and Kochen-Specker-like phenomena are presented to characterize neutrons’ entangled states and their peculiarity. Furthermore, a coherent energy manipulation scheme is accomplished with a radio-frequency (RF) spin-flipper. This scheme allows the (total) energy degree of freedom to be entangled: the remarkable behavior of a triply entangled GHZ-like state is demonstrated.  相似文献   

17.
Continuous variable entanglement and violation of Bell inequality for two modes are investigated in a three-level cascade atomic system. Entanglement of the system is demonstrated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000)2722]. Violation of Bell inequality is studied within the framework of a quantum theory of multiwave mixing. It is shown that there are some states that are entangled but do not violate the Bell inequality.  相似文献   

18.
Jia X  Su X  Pan Q  Gao J  Xie C  Peng K 《Physical review letters》2004,93(25):250503
The unconditional entanglement swapping for continuous variables is experimentally demonstrated. Two initial entangled states are produced from two nondegenerate optical parametric amplifiers operating at de-amplification. Through implementing the direct measurement of the Bell-state between two optical beams from each amplifier the remaining two optical beams, which have never directly interacted with each other, are entangled. The quantum correlation degrees of 1.23 and 1.12 dB below the shot noise limit for the amplitude and phase quadratures resulting from the entanglement swapping are measured straightly.  相似文献   

19.
In the context of quantum information, we investigate extensively some important classes of a general form of a two-qubit system under Lorentz transformation. It is shown Lorentz transformation causes a decay of entanglement and consequently information loses. On the other hand, it generates entangled states between systems prepared initially in a separable states. The partial entangled states are more robust under Lorentz transformation than maximally entangled states. Therefore the rate of information lose is larger for maximum entangled states compared with that for partially entangled states.  相似文献   

20.
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号