首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl-l-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H–1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 (S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 (δ = 8 ppm) and H4 (δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 − 3) × 10−4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 − 137) × 10−4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model solutions of histidine and N-acetyl-l-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle (θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.  相似文献   

2.
The increased magnetization and frequency separation at high magnetic field strength, such as 7 T, can provide spectra of high signal-to-noise ratio and spectral resolution. However, most human brain magnetic resonance spectroscopy (MRS) studies at 7 T have employed surface coils and thus limited to superficial brain structures. In this study, volume coil excitation together with volume array reception has been utilized to access deeper brain areas. RF power limitations have been addressed by the use of VERSE-modified pulses, and spectra in parietal and pregenual anterior cingulate cortex (pgACC) have been acquired in eight subjects using STEAM with a short echo time of 20 ms. Spectra were analyzed using LC-model. Therefore, an experimental basis set of in vitro spectra was established from 20 human brain metabolite solutions. An exemplary comparison with an optimized PRESS-based single voxel MRS method at 3 T has been performed. Despite the intrinsically lower signal in STEAM, the 7 T spectra show 1.87 times higher signal-to-noise ratio than at 3 T (using PRESS) and more metabolites could be quantified reliably. The results show that the proposed method can be employed at 7 T in deep brain structures and allows the absolute and relative concentrations of human brain metabolites to be determined with low error levels.  相似文献   

3.
The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based on powder X-ray diffraction combined with Rietveld analysis and with Taylor–Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra recorded at four magnetic fields (4.7–14.1 T) and this has led to an improved quantification of alite and belite from 29Si MAS NMR spectra recorded at “high” spinning speeds of νR=12.0–13.0 kHz using 4 or 5 mm rotors. Furthermore, the impact of Fe3+ ions on the spin-lattice relaxation was studied by inversion-recovery experiments and it was found that the relaxation is overwhelmingly dominated by the Fe3+ ions incorporated as guest-ions in alite and belite rather than the Fe3+ sites present in the intimately mixed ferrite phase (Ca2AlxFe2−xO5).  相似文献   

4.
So far, fast spectroscopic imaging (SI) using the U-FLARE sequence has provided metabolic maps indirectly via Fourier transformation (FT) along the chemical shift (CS) dimension and subsequent peak integration. However, a large number of CS encoding steps Nω is needed to cover the spectral bandwidth and to achieve sufficient spectral resolution for peak integration even if the number of resonance lines is small compared to Nω and even if only metabolic images are of interest and not the spectra in each voxel. Other reconstruction algorithms require extensive prior knowledge, starting values, and/or model functions. An adjusted CS phase encoding scheme (APE) can be used to overcome these drawbacks. It incorporates prior knowledge only about the resonance frequencies present in the sample. Thus, Nω can be reduced by a factor of 4 for many 1H in vivo studies while no spectra have to be reconstructed, and no additional user interaction, prior knowledge, starting values, or model function are required. Phantom measurements and in vivo experiments on rat brain have been performed at 4.7 T to test the feasibility of the method for proton SI.  相似文献   

5.
Several pioneering studies have demonstrated that localized31P NMR spectroscopy of the human heart might become an important diagnostic tool in cardiology. The main limitation is due to the low sensitivity of these experiments, allowing only crude spatial resolution. We have implemented a three-dimensional version of SLOOP (“spectral localization with optimal pointspread function”) on a clinical instrument. SLOOP takes advantage of all availablea prioriinformation to match the size and the shape of the sensitive volumes to the anatomical structures in the examined subject. Thus, SLOOP reduces the contamination from adjacent organs and improves the sensitivity compared to conventional techniques such as ISIS or chemical shift imaging (CSI). Initial studies were performed on six healthy volunteers at 1.5 T. The good localization properties are demonstrated by the absence of resonances from blood in the heart spectra, and by PCr-free spectra from the liver. Compared to conventional CSI, the signal-to-noise ratio of the SLOOP heart spectra was improved by approximately 30%. Taking into account the varying excitation angle in the inhomogeneous B1field of the surface coil, the SLOOP model computes the local spin saturation at every point in space. Therefore, no global saturation correction is required in the quantitative evaluation of local spectra. In this study, we found a PCr/γ-ATP ratio in the left ventricular wall of 1.90 ± 0.33 (mean ± standard deviation).  相似文献   

6.
While most proton (1H) spectra acquired in vivo utilize selective suppression of the solvent signal for more sensitive detection of signals from the dilute metabolites, recent reports have demonstrated the feasibility and advantages of collecting in vivo data without solvent attenuation. When these acquisitions are performed at short echo times, the presence of frequency modulations of the water resonance may become an obstacle to the identification and quantitation of metabolite resonances. The present report addresses the characteristics, origin, and elimination of these sidebands. Sideband amplitudes were measured as a function of delay time between gradient pulse and data collection, as a function of gradient pulse amplitude, and as a function of spatial location of the sample for each of the three orthogonal gradient sets. Acoustic acquisitions were performed to demonstrate the correlation between mechanical vibration resonances and the frequencies of MR sidebands. A mathematical framework is developed and compared with the experimental results. This derivation is based on the theory that these frequency modulations are induced by magnetic field fluctuations generated by the transient oscillations of gradient coils.  相似文献   

7.
In this work the feasibility of measuring neuronal-glial metabolism in rat brain in vivo using co-infusion of [1,6-13C2]glucose and [1,2-13C2]acetate was investigated. Time courses of 13C spectra were measured in vivo while infusing both 13C-labeled substrates simultaneously. Individual 13C isotopomers (singlets and multiplets observed in 13C spectra) were quantified automatically using LCModel. The distinct 13C spectral pattern observed in glutamate and glutamine directly reflected the fact that glucose was metabolized primarily in the neuronal compartment and acetate in the glial compartment. Time courses of concentration of singly and multiply-labeled isotopomers of glutamate and glutamine were obtained with a temporal resolution of 11 min. Although dynamic metabolic modeling of these 13C isotopomer data will require further work and is not reported here, we expect that these new data will allow more precise determination of metabolic rates as is currently possible when using either glucose or acetate as the sole 13C-labeled substrate.  相似文献   

8.
Temperature dependence of the magnetic resonance is used to study the magnetic material in oriented Neocapritermes opacus (N.o.) termite, the only prey of the migratory ant Pachycondyla marginata (P.m.). A broad line in the g=2 region, associated to isolated nanoparticles shows that at least 97% of the magnetic material is in the termite’s body (abdomen + thorax). From the temperature dependence of the resonant field and from the spectral linewidths, we estimate the existence of magnetic nanoparticles 18.5 ± 0.3 nm in diameter and an effective magnetic anisotropy constant, Keff between 2.1 and 3.2 × 104 erg/cm3. A sudden change in the double integrated spectra at about 100 K for N.o. with the long body axis oriented perpendicular to the magnetic field can be attributed to the Verwey transition, and suggests an organized film-like particle system.  相似文献   

9.
IR absorption spectra, 4200–3100 cm−1, of water in CCl4 solutions are presented. It is shown that for saturated solutions significant amounts of water are present as dimer (ca. 2%). The IR spectra of the monomer and dimer are retrieved. The integrated absorption coefficients of the monomer absorption are significantly enhanced relative to the gas phase values. The dimer spectrum consists of 5 bands, of which 4 were expected from data from cold beams and cold matrices. The origin of the “extra” band is discussed. In addition it is argued that the dimer absorption bands intensities must be enhanced relative to the gas phase values. Based on recent calculations of band strengths, and observed frequency shifts relative to the gas phase, the intensity enhancement factors are estimated as well as the monomer/dimer equilibrium constant in CCl4 solution at T=296 K (Kc=1.29 mol−1 L). It is noted that the observed dimer spectrum has a striking resemblance with the water vapour continuum determined by Burch in 1985 which was recently remeasured by Paynter et al. and it is concluded that the atmospheric water absorption continuum in the investigated spectral region must be due to water dimer. Based on the newly published spectral data a revised value of the gas phase equilibrium constant is suggested (Kp=0.035 atm−1 at T=296 K) as well as a value for the standard enthalpy of formation, ΔH0=15.4 kJ mol−1.  相似文献   

10.
We theoretically investigate the impact of multiple plasmon resonances on the charging of Xe clusters embedded in He nanodroplets under intense pump-probe laser excitation (τ = 25 fs, I 0 = 2.5 × 1014   W/cm2, λ = 800 nm). Our molecular dynamics simulations on Xe309He10 000 and comparison to results for free Xe309 give clear evidence for selective resonance heating in the He shell and the Xe cluster, but no corresponding double hump feature in the final Xe charge spectra is found. Though the presence of the He shell substantially increases the maximum charge states, the pump-probe dynamics of the Xe spectra from the embedded system is similar to that of the free species. In strong contrast to that, the predicted electron spectra do show well-separated and pronounced features from highly efficient plasmon assisted electron acceleration for both resonances in the embedded clusters. A detailed analysis of the underlying ionization and recombination dynamics is presented and explains the apparent disaccord between the resonance features in the ion and electron spectra.  相似文献   

11.
The quartic force field of pyrazine has been calculated in the B3LYP/6-31G(d) hybrid density-functional approximation. Based on the results of this calculation, the total IR (250–3800 cm–1) and Raman (400–3200 cm–1) spectra of pyrazine have been interpreted with consideration for the Fermi and Darling-Dennison resonances and their spectral manifestations. A precision method is proposed for anharmonic analysis of the vibrational states of polyatomic molecules on the basis of consideration of their theoretical anharmonicity constants in combination with the corresponding experimental frequencies. The method of linear scaling of frequencies has been theoretically substantiated.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 1, pp. 13–22, January–February, 2005.  相似文献   

12.
In the Earth’s magnetic field, it is possible to observe spin systems consisting of unlike spins that exhibit strongly coupled second-order NMR spectra. Such spectra result when the J-coupling between two unlike spins is of the same order of magnitude as the difference in their Larmor precession frequencies. Although the analysis of second-order spectra involving only spin-½ nuclei has been discussed since the early days of NMR spectroscopy, NMR spectra involving spin-½ nuclei and quadrupolar (I > ½) nuclei have rarely been treated. Two examples are presented here, the tetrahydroborate anion, , and the ammonium cation, . For the tetrahydroborate anion, 1J(11B,1H) = 80.9 Hz, and in an Earth’s field of 53.3 μT, ν(1H) = 2269 Hz and ν(11B) = 728 Hz. The 1H NMR spectra exhibit features that both first- and second-order perturbation theory are unable to reproduce. On the other hand, second-order perturbation theory adequately describes 1H NMR spectra of the ammonium anion, , where 1J(14N,1H) = 52.75 Hz when ν(1H) = 2269 Hz and ν(14N) = 164 Hz. Contrary to an early report, we find that the 1H NMR spectra are independent of the sign of 1J(14N,1H). Exact analysis of two-spin systems consisting of quadrupolar nuclei and spin-½ nuclei are also discussed.  相似文献   

13.
The perpendicularv 8 band lying in the 1000–1100 cm–1 region has been studied from infrared and laser Stark, spectra. We were interested in the part of spectrum corresponding to the spectral range of the 9 m CO2 laser lines. Assignments of rovibrational lines with J'<40 and K'<6 have been made. About 100 Stark resonances have been assigned to 12 rovibrational transitions. Effective molecular constants and dipole moment have been determined with high accuracy. A list of close resonances with CO2 laser lines is given and may be used for optical pumping experiments.  相似文献   

14.
PurposeOver the past decade, many techniques have been developed to reduce radiofrequency (RF) power deposition associated with proton decoupling in in vivo Carbon-13 (13C) magnetic resonance spectroscopy (MRS). In this work we propose a new strategy that uses data under-sampling to achieve reduction in RF power deposition.Materials and methodsEssentially, proton decoupling is required only during randomly selected segments of data acquisition. By taking advantage of the sparse spectral pattern of the carboxylic/amide region of in vivo 13C spectra of brain, we developed an iterative algorithm to reconstruct spectra from randomly under-sampled data. Fully sampled data were used as references. Reconstructed spectra were compared with the fully sampled references and evaluated using residuals and relative signal intensity errors.ResultsNumerical simulations and in vivo experiments at 7 Tesla demonstrated that this novel decoupling and data processing strategy can effectively reduce decoupling power deposition by greater than 30%.ConclusionThis study proposes and evaluates a novel approach to acquire 13C data with reduced proton decoupling power deposition and reconstruct in vivo 13C spectra of carboxylic/amide metabolite signals using randomly under-sampled data. Because proton decoupling is not needed over a significant portion of data acquisition, this novel approach can effectively reduce the required decoupling power and thus SAR. It opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields.  相似文献   

15.
InN films have been grown by plasma-assisted molecular beam epitaxy (PAMBE) and characterized by various technologies. It was found that the structural, optical and electrical properties can be drastically improved by raising growth temperature from 440 to 525 °C. Grainy morphology was found in the grain size was found in atomic force microscope images. The large grain size was about 360 nm for a film grown at 525 °C. These films exhibited Wurtzite structure with a c/a ratio ranging from 1.59 to 1.609. The dislocation densities estimated by X-ray diffraction techniques closely agreed with those analyzed by plan-view transmission electron microscopy. Photoluminescence (PL) studies confirmed near band-to-band transitions and the narrowest low-temperature PL peak width was found to be 24 meV at 0.666 eV. Carrier concentrations decreased from 1.44×1019 to 1.66×1018 cm−3 and Hall mobility increased from 226 to 946 cm2 V−1 s−1 as the growth temperature is progressively increased from 440 to 525 °C. Raman spectra also indicated improved crystal quality as the growth temperature was raised.  相似文献   

16.
Flux pinning in melt-processed (Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy “NEG-123” + 35 mol% Gd2BaCuO5 “NEG-211” (70 nm in size) composite doped by TiO3, MoO3 and Nb2O5 achieved record values. The optimum values of all three dopands were found to be around 0.1 mol%. Transmission electron microscope (TEM) analysis found clouds of <10 nm sized particles in the NEG-123 matrix, shifting the pinning particle size distribution to significantly lower values. TEM by energy dispersive X-ray spectroscopy (EDX) analysis clarified that these nanoparticles contained a significant amount of Nb, Mo, and Ti. Appearance of nanometer-sized defects correlated with a significantly improved flux pining at low and medium magnetic fields, which was particularly significant at high temperatures. In the Nb-doped sample, a record Jc value of 925 kA/cm2 at the secondary peak field (4.5 T) was achieved at 65 K, 640 kA/cm2 at zero field at 77 K, and 100 kA/cm2 at 90.2 K, the last value having been up to now considered as a good standard for REBa2Cu3Oy “RE-123” materials at 77 K. The greatly improved JcB performance in Nb/Mo/Ti doped samples can be easily translated to large-scale LRE-123 (LRE = light rare earths, Nd, Eu, Gd, Sm) blocks intended for real superconducting super-magnets applications.  相似文献   

17.
An improved set of molecular constants and term values are given for the X2Π (v = 0–13) and B2Σ+ (v = 0 and 1) states of the OH radical. They are derived from a fit of previously published laboratory data and additional lines taken from infrared solar spectra recorded on orbit.  相似文献   

18.
The optical absorption of thermally evaporated copper phthalocyanine (CuPc) was studied in the UV-VIS-NIR region. The absorption spectra recorded in the UV-VIS region show two well-defined absorption bands of the phthalocyanine molecules, namely, the Soret (B) and the Q-band . The Q-band shows its characteristic splitting (Davydov splitting) of the main absorption peak in the metal phthalocyanine correlates with the relative tendencies of the metal to out-of-plane bonding. Some of the important spectral characteristics such as the molar extinction coefficient (εmolar), the oscillator strength (f), the electric dipole strength (q2) and absorption half-bandwidth (Δλ) of the principle optical transitions were evaluated. The analysis of the spectral behavior of the absorption coefficient α in the absorption region revealed two indirect allowed transitions with corresponding energies 2.95±0.03 and 1.55±0.02 eV.The spectra of the infrared absorption allow characterization of vibration modes for the powder, as-deposited material and thin films of CuPc annealed at 423 K for two hours. Discussion of the obtained results and their comparison with the previous published data are also given.  相似文献   

19.
27Al magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were acquired at 8.45, 14.1 and 16.45 T for a series of aluminium borates with the mullite structure (Al6−x B x O9, where x has nominal values of 1 to 4) augmented with 27Al multiple-quantum MAS NMR spectra at 8.45 T. Even though the 27Al NMR spectra are complex, simulation of the combined set of data produced a relatively well-defined set of parameters (e.g., quadrupolar interaction, isotropic chemical shift, etc.) for each site. The 11B MAS NMR spectra of the same compounds were also acquired at 14.1 T. Linear changes in the X-ray a-, b- and c-cell parameters with composition suggest that these compounds constitute a continuous series. Based on a Rietveld structural refinement of the compound synthesized as Al4B2O9, the resulting site occupancies and relative site distortions allow the identification of particular sites with specific NM resonances. Changes in the 27Al and 11B MAS NMR spectra of the related compounds with x = 1–4 show at the lowest Al contents a greater degree of asymmetry in the Al sites of the octahedral chains. A fairly distorted cross-linking tetrahedral site, which persists throughout the composition range, is accompanied in the lower Al compositions by two 5-fold coordinated Al–O units which are replaced by two more-regular tetrahedral Al–O sites as the Al content increases. In the compounds of lowest Al composition (i.e., highest B content) both the tetrahedral and trigonal cross-linking sites are distinguishable, but as the Al content increases, the BO4 units progressively disappear. Authors' address: Kenneth J. D. MacKenzie, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand  相似文献   

20.
Physical and spectral studies on 20ZnO + xLi2O + (30-x)Na2O + 50B2O3 (5 ≤ x ≥ 25) doped with 0.1 mol% of paramagnetic CuO impurity are carried out. Powder X-ray diffraction patterns of the glass samples confirm the amorphous nature. The physical parameters of all the glasses were also evaluated with respect to the composition. The electron paramagnetic resonance spectra of all these glasses exhibit resonance signals that are characteristic of Cu2+ ions. The optical absorption spectra also confirm the Cu2+ ion in tetragonally elongated octahedral site. Various crystal field, spin-Hamiltonian and bonding parameters are evaluated. It is observed that the mixed alkali effect is significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号