首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We study the Mott transition as a function of interaction strength in the half-filled Hubbard chain with next-nearest-neighbor hopping t' by calculating the response to an external electric field using the density matrix renormalization group. The electric susceptibility chi diverges when approaching the critical point from the insulating side. We show that the correlation length xi characterizing this transition is directly proportional to fluctuations of the polarization and that chi approximately xi2. The critical behavior shows that the transition is infinite order for all t', whether or not a spin gap is present, and that hyperscaling holds.  相似文献   

2.
王竞  EnricoArrigoni 《中国物理 B》2009,18(6):2475-2480
The one-electron spectral function of a frustrated Hubbard chain is computed by making use of the cluster perturbation theory. The spectral weight we found turns out to be strongly dependent on the frustrating next-nearest-neighbor hopping t'. A frustration induced pseudogap arises when the system evolves from a gapful Mott insulator to a gapless conductor for an intermediate value of the frustration parameter |t'|. Furthermore, the opening of a pseudogap in the density of states already in the metallic side leads to a continuous opening of the true gap in the insulator. For the hole-doped case, the pseudogap is pinned at the Fermi energy, while the Mott gap is shifted in energy with increasing Hubbard interaction U. The separation of the pseudogap and Mott gap in the hole-doped system demonstrates the validity of the existence of a pseudogap.  相似文献   

3.
Predictions are made for the momentum- and carrier-dependent degradation of the Mott gap upon doping in high-T(c) cuprates as would be observed in Cu K-edge resonant inelastic x-ray scattering (RIXS). The two-dimensional Hubbard model with second- and third-nearest-neighbor hopping terms has been studied by numerical exact diagonalization. Special emphasis is placed on the particle-hole asymmetry of the Mott gap excitations. We argue that the Mott gap excitations observed by RIXS are significantly influenced by the interaction between charge carriers and antiferromagnetic correlations.  相似文献   

4.
The low-temperature 2D variable range hopping conduction over the states of the upper Hubbard band is investigated in detail for the first time in multilayered Be-doped p-type GaAs/AlGaAs structures with quantum wells of 15-nm width. This situation was realized by doping the layer in the well and a barrier layer close to the well for the upper Hubbard band (A + centers) in the equilibrium state filled with holes. The conduction was of the Mott hopping type in the entire temperature range (4?0.4 K). The positive and negative magnetoresistance branches as well as of non-Ohmic hopping conduction at low temperature are analyzed. The density of states and the localization radius, the scattering amplitude, and the number of scatterers in the upper Hubbard band are estimated. It is found that the interference pattern of phenomena associated with hopping conduction over the A + band is qualitatively similar to the corresponding pattern for an ordinary impurity band, but the tunnel scattering is relatively weak.  相似文献   

5.
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition point. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale. The insulating state is characterized by the narrow Mott gap with pronounced peaks at the gap edge.  相似文献   

6.
Three topics related to correlated electrons in coupled quantum dots are discussed. The first is quasi-resonance between multi-electron states, which causes hitherto unremarked types of resonant absorption in coupled quantum dots. The second is electron tunneling through a Hubbard gap, which is induced by an increase in the density of electrons in a quantum-dot chain under an overall confining potential. The third is Mott transition in a two-dimensional quantum-dot array induced by an external electric field. In this system, the metal-insulator transition goes through a heavy electron phase in which the density of correlated electrons fluctuates.  相似文献   

7.
We solve the periodic Anderson model in the Mott-Hubbard regime, using dynamical mean field theory. Upon electron doping of the Mott insulator, a metal-insulator transition occurs which is qualitatively similar to that of the single band Hubbard model, namely, with a divergent effective mass and a first order character at finite temperatures. Surprisingly, upon hole doping, the metal-insulator transition is not first order and does not show a divergent mass. Thus, the transition scenario of the single band Hubbard model is not generic for the periodic Anderson model, even in the Mott-Hubbard regime.  相似文献   

8.
9.
We investigate the Mott transition in weakly coupled one-dimensional (1D) fermionic chains. Using a generalization of dynamical mean field theory, we show that the Mott gap is suppressed at some critical hopping t{ perpendicular}{c2}. The transition from the 1D insulator to a 2D metal proceeds through an intermediate phase where the Fermi surface is broken into electron and hole pockets. The quasiparticle spectral weight is strongly anisotropic along the Fermi surface, both in the intermediate and metallic phases. We argue that such pockets would look like "arcs" in photoemission experiments.  相似文献   

10.
We study the dynamical properties of ultracold fermions in one-dimensional optical superlattices by using the adaptive time-dependent density matrix renormalization group method. The system is repulsive Hubbard model with an two-site periodic superlattice potential. Owing to superlattice structure, the ground-state states become the Mott-type insulating state at quarter-filling and band-type insulating state at half-filling, respectively. We clarify the dynamical properties of time evolution when the system is non-adiabatically changed to another lattice structure (i.e., the superlattice potential is suddenly changed to a normal one). In the case of Mott-type insulating state at quarter-filling, the time evolution exhibits a profile similar to that expected for single atom. On the other hand, we clarify the dynamical properties of a band-type insulating state at half-filling. The strongly-correlated interaction an unusual pairing of fermions induced the pair hopping process. We further address the robustness of pair hopping process and possibility of superconductivity by using sudden change from superlattice structure to normal one.  相似文献   

11.
王义林  黄理  杜亮  戴希 《中国物理 B》2016,25(3):37103-037103
We have studied the doping-driven orbital-selective Mott transition in multi-band Hubbard models with equal band width in the presence of crystal field splitting. Crystal field splitting lifts one of the bands while leaving the others degenerate. We use single-site dynamical mean-field theory combined with continuous time quantum Monte Carlo impurity solver to calculate a phase diagram as a function of total electron filling N and crystal field splitting Δ. We find a large region of orbital-selective Mott phase in the phase diagram when the doping is large enough. Further analysis indicates that the large region of orbital-selective Mott phase is driven and stabilized by doping. Such models may account for the orbital-selective Mott transition in some doped realistic strongly correlated materials.  相似文献   

12.
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U > Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.  相似文献   

13.
耦合双量子点中电子间静电相互作用对电子在系统中隧穿效应具有重要影响.考虑电子隧穿,交换及Hubbard关联作用后,在单态近似下,本文求解了耦合双量子点二电子问题,讨论了铁磁基态及Mott局域化态出现的条件。这里的结果表明电子的隧穿不利于铁磁基态的形成,Hubbard关联越强越有利于Mott局域化态的形成,并且在交换作用下Mott局域化态会转变为铁磁基态. 此外,外场可以诱导磁序相的改变。  相似文献   

14.
We study the superfluid to Mott‐insulator transition of bosons in an optical anisotropic lattice by employing the Bose‐Hubbard model living on a two‐dimensional lattice with anisotropy parameter κ. The compressible superfluid state and incompressible Mott‐insulator (MI) lobes are efficiently described analytically, using the quantum U(1) rotor approach. The ground state phase diagram showing the evolution of the MI lobes is quantified for arbitrary values of κ, corresponding to various kind of lattices: from square, through rectangular to almost one‐dimensional.  相似文献   

15.
Taking the site-diagonal terms of the ionic Hubbard model (IHM) in one and two spatial dimensions, as H0, we employ Continuous Unitary Transformations (CUT) to obtain a “classical” effective Hamiltonian in which hopping term has been renormalized to zero. For this Hamiltonian spin gap and charge gap are calculated at half-filling and subject to periodic boundary conditions. Our calculations indicate two transition points. In fixed Δ, as U increases from zero, there is a region in which both spin gap and charge gap are positive and identical; characteristic of band insulators. Upon further increasing U, first transition occurs at U=Uc1, where spin and charge gaps both vanish and remain zero up to U=Uc2. A gap-less state in charge and spin sectors characterizes a metal. For U>Uc2 spin gap remains zero and charge gap becomes positive. This third region corresponds to a Mott insulator in which charge excitations are gaped, while spin excitations remain gap-less.  相似文献   

16.
We present density-matrix renormalization group results for the ground state properties of two-leg Hubbard ladders. The half-filled Hubbard ladder is an insulating spin-gapped system, exhibiting a crossover from a spin liquid to a band insulator as a function of the interchain hopping matrix element. When the system is doped, there is a parameter range in which the spin gap remains. In this phase, the doped holes from singlet pairs and the pair field and the “4kF” density correlations associated with pair-density fluctuations decay as power laws, while the “2kF” charge density wave correlations decay exponentially. We discuss the behavior of the exponents of the pairing and density correlations within this spin-gapped phase. Additional one-band Luttinger liquid phases which occur in the large interband hopping regime are also discussed.  相似文献   

17.
The ground state of the one-dimensional hard-core boson Hubbard model with a superlattice potential is studied by quantum Monte Carlo methods. We demonstrate that besides the CDW phase and the Mott insulator phase, the supersolid phase emerges due to the presence of the superlattice potential, which reflects the competition with the hopping term. We also study the densities of sublattices and have a clear idea about the distribution of the bosons on the lattice.  相似文献   

18.
We describe a femtosecond pump-probe study of ultrafast hopping dynamics of 5f electrons in the Mott insulator UO? following Mott-gap excitation at temperatures of 5-300 K. Hopping-induced response of the lattice and electrons is probed by transient reflectivity at mid- and above-gap photon energies, respectively. These measurements show an instantaneous hop, subsequent picosecond lattice deformation, followed by acoustic phonon emission and microsecond relaxation. Temperature-dependent studies indicate that the slow relaxation results from Hubbard excitons formed by U3?-U?? pairs.  相似文献   

19.
We present the first rigorous example of the Hubbard model in any dimension which exhibits metallic ferromagnetism. The model is a genuine Hubbard model with short-range hopping and on-site Coulomb repulsion, and has many single-electron bands. In the limit where the band gap and the Coulomb repulsion become infinite, we prove that the ground states are completely ferromagnetic and at the same time conducting.  相似文献   

20.
In this work we give a consistent picture of the thermodynamic properties of bosons in the Mott insulating phase when loaded adiabatically into one-dimensional optical lattices. We find a crucial dependence of the temperature in the optical lattice on the doping level of the Mott insulator. In the undoped case, the temperature is of the order of the large onsite Hubbard interaction. In contrast, at a finite doping level the temperature jumps almost immediately to the order of the small hopping parameter. These two situations are investigated on the one hand by considering limiting cases like the atomic limit and the case of free fermions. On the other hand, they are examined using a quasi-particle conserving continuous unitary transformation extended by an approximate thermodynamics for hardcore particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号