首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Terahertz quantum cascade lasers(THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model.Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.  相似文献   

2.
本文综述了共振声子太赫兹(THz)量子级联激光器(QCL)载流子输运及其光电特性的研究结果。我们采用Monte Carlo方法模拟了不同有源区结构的共振声子THz QCL,如四阱有源区和三阱有源区结构等,优化了THz QCL的器件参数。计算表明,器件的增益依赖于注入势垒的宽度、掺杂浓度和声子抽运能级间隔等参数。单阱注入的THz QCL可以获得低的激射频率,而三阱有源区结构的THz QCL具有更高的工作温度。我们数值模拟了这两种器件结构在不同寄生电压下的电子输运、增益以及温度特性等。同时,我们实验测量了THz QCL的发射谱偏压和温度效应,计算结果与实验相吻合。研究结果表明,随着偏压增加发射谱出现了明显的频率蓝移,多模激射仅出现在大电流注入情形。与偏压的密切依赖关系不同,激射频率对温度的变化并不敏感。  相似文献   

3.
High-power terahertz sources operating at room-temperature are promising for many applications such as explosive materials detection, non-invasive medical imaging, and high speed telecommunication. Here we report the results of a simulation study, which shows the significantly improved performance of room-temperature terahertz quantum cascade lasers (THz QCLs) based on a ZnMgO/ZnO material system employing a 2-well design scheme with variable barrier heights and a delta-doped injector well. We found that by varying and optimizing constituent layer widths and doping level of the injector well, high power performance of THz QCLs can be achieved at room temperature: optical gain and radiation frequency is varied from 108 cm?1 @ 2.18 THz to 300 cm?1 @ 4.96 THz. These results show that among II–VI compounds the ZnMgO/ZnO material system is optimally suited for high-performance room-temperature THz QCLs.  相似文献   

4.
We identified conditions for room‐temperature operation of terahertz quantum cascade lasers (THz QCLs) where variable barrier heights are used on ZnSe/Zn1–xMgx Se material systems. The THz QCL devices are based on three‐level two‐well design schemes. The THz QCL lasers with alternating quantum barriers with different heights were compared with THz QCL laser structures with fixed quantum barrier heights. It is found that the THz QCL device with novel design employing variable barrier heights achieved the terahertz emission of about 1.45 THz at room‐temperature (300 K), and has improved laser performance due to the suppression of thermally activated carrier leakage via higher‐energy parasitic levels. Thus, THz QCL devices employing the design with variable barrier heights may lead to future improvements of the operating temperature and performance of THz QCL lasers. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
We propose the idea of developing THz quantum cascade lasers (QCLs) with GaN-based quantum well (QW) structures with significant advantages over the currently demonstrated THz lasers in the GaAs-based material system. While the ultrafast longitudinal optical (LO) phonon scattering in AlGaN/GaN QWs can be used for the rapid depopulation of the lower laser state, the large LO-phonon energy (∼90 meV) can effectively reduce the thermal population of the lasing states at higher temperatures. Our analysis of one particular structure has shown that a relatively low threshold current density of 832 A/cm2 can provide a threshold optical gain of 50/cm at room temperature. We have also found that the characteristic temperature in this structure is as high as 136 K.  相似文献   

6.
We characterize a heterodyne receiver based on a surface-plasmon waveguide quantum cascade laser (QCL) emitting at 2.84 THz as a local oscillator, and an NbN hot electron bolometer as a mixer. We find that the envelope of the far-field pattern of the QCL is diffraction-limited and superimposed onto interference fringes, which are similar to those found in narrow double-metal waveguide QCLs. Compared to the latter, a more directional beam allows for better coupling of the radiation power to the mixer. We obtain a receiver noise temperature of 1050 K when the mixer is at 2 K, which, to our knowledge, is the highest sensitivity reported at frequencies beyond 2.5 THz.  相似文献   

7.
Terahertz (THz) quantum cascade lasers (QCLs) are key elements for high-power terahertz beam generation for integrated applications. In this study, we design a highly nonlinear THz-QCL active region in order to increase the output power of the device especially at lower THz frequencies based on difference frequency generation (DFG) process. It has been shown that the output power increases for a 3.2 THz structure up to 1.2 μW at room temperature in comparison with the reported power of P = 0.3 μW in [1]. The mid-IR wavelengths associated with this laser are λ1 = 12.12 μm and λ2 = 13.93 μm, which are mixed in a medium with high second-order nonlinearity. A similar approach has been used to design an active region with THz frequency of 1.8 THz. The output power of this structure reaches to 1 μW at room temperature where the mid-IR wavelengths are λ1 = 12.05 μm, λ2 = 12.99 μm.  相似文献   

8.
We develop terahertz mixers with monolithic integrated circuits containing balanced, series and antiparallel pairs of Schottky diodes. The designs of these mixers and a method for studying their parameters are described. The best results are obtained for the antiparallel diode pair. In this case, the double-sideband noise temperature of the receiver amounts to 5600–7500 K when operating at the second heterodyne-oscillator harmonic near the frequency 0.71 THz.  相似文献   

9.
孙青  杨奕  邓玉强  孟飞  赵昆 《物理学报》2016,65(15):150601-150601
频率是电磁波最重要的一个基本物理量,随着THz技术的发展,在光源研制、宽带通信、超精细光谱测量等领域都对THz频率的高精度侧量提出了要求.传统的Fabry-Perot干涉法与外差探测法难以实现THz频率的高精度测量,频率梳方法虽然测量精度很高,但测量系统复杂.本文提出一种利用重复频率自由漂移的飞秒激光器实现太赫兹频率精密测量的新方法.通过对非锁定的飞秒激光器的重复频率和THz拍频频率进行同时连续采集与计算,得到被测THz频率,测量精度可以达到10~(-10)量级无需对飞秒激光重复频率进行复杂的锁定控制,测量系统大大简化.  相似文献   

10.
The aim of this work is to establish an approach for obtaining improved design parameters for high temperature operation of terahertz quantum cascade lasers using a multi-objective evolutionary algorithm. For studying the lasing conditions of a quantum cascade laser, a self-consistent model is adopted. This model uses standard wave function approximation and effective mass approximation with relevant scattering mechanisms to solve Schrodinger’s equation for the cascaded quantum wells. Fermi’s Golden Rule is then used to calculate the corresponding lifetime of each eigen states. To describe the coherent evolution of wave functions and phase breaking, density matrix formalism is employed. Subsequently, laser rate equations are used for calculating the parameters related to electronic transport in the device. These parameters are then utilized for investigating the temperature dependence of existing terahertz quantum cascade lasers. Finally, using an optimization technique based on Genetic algorithm, design parameters for resonant-phonon quantum cascade laser are obtained within the terahertz frequency range. The results illustrate that this optimization process can offer improvement in the performance of quantum cascade lasers in terahertz region at an elevated temperature. Moreover, the results also reveal that significant increase in operating temperature of a resonant phonon terahertz QCL is unlikely and hence novel design approaches should be considered for operating THz QCLs at room temperature.  相似文献   

11.
Microcavity THz quantum cascade laser   总被引:1,自引:0,他引:1  
We report operation of disk and ring shaped terahertz (THz) quantum-cascade lasers (QCLs) emitting in the THz region between 3.0 and 3.4 THz. The GaAs/Al0.15Ga0.85As heterostructure is based on longitudinal-optical phonon scattering for depopulation of the lower radiative state. A double metal waveguide is used to confine the whispering gallery modes in the gain medium. The threshold current density is at 5 K. 3D Finite-Difference Time-Domain (FDTD) simulations were performed to obtain the field distributions within a THz QCl resonator at different frequencies.  相似文献   

12.
量子级联激光器作为一种新型的单极型半导体激光器,其峰值发射波长处于中红外波段(2.5~25 μm),具有功率高、线宽窄、响应速率快等传统半导体激光器所没有的独特优势,且具有较高的探测灵敏度,非常适合中红外波段的气体分子的检测。可广泛应用于大气痕量气体、呼吸气体、燃烧气体、生化气体、机动车尾气、工业废气以及农药残留气体等低浓度气体的检测。因此,利用量子级联激光器对气体分子进行探测在非侵入式医学诊断、环境监测以及工农业生产等领域都具有十分重要的意义。自20世纪末量子级联激光器发明以来,室温激光器的性能得到了长足的进步,也出现了多种结构形式的量子级联激光器。这也使得量子级联激光器红外吸收光谱技术得到了很大的发展。事实上,很多光谱技术在量子级联激光器发明之前就已经得到了发展和应用,而利用量子级联激光器作为光源则在很大程度上扩展了可探测波段,也在一定程度上提高了探测极限。这其中就包括了直接吸收光谱技术、波长调制技术、腔衰荡光谱技术、腔增强吸收光谱技术以及光声光谱等。综述了国内外量子级联激光器进行红外吸收光谱技术的研究现状和发展趋势,分析了量子级联激光器红外吸收光谱技术在发展过程中所遇到的瓶颈以及后期得到的解决方案,比较详细地介绍了各种方法的原理、应用,并指出了在吸收光谱测量中的优缺点,同时对外场痕量气体探测作了简要总结。最后,对量子级联激光器红外吸收光谱技术在未来痕量气体探测上的应用和发展进行了展望,指出随着红外吸收光谱技术的快速发展,这些方法可以得到更有效的改进和发展,进而朝着高灵敏度、高集成度以及高时效方向发展。  相似文献   

13.
We discuss design issues of devices which were proposed recently [Opt. Lett. 37 (2012) 3903] for terahertz (THz) control of the propagation of an optical waveguide mode. The mode propagates through a nonlinear dielectric material placed in a metallic nanoslit illuminated by THz radiation. The THz field in the slit is strongly localized and thus significantly enhanced, facilitating nonlinear interactions with the dielectric waveguide material. This enhancement can lead to notable changes in the refractive index of the waveguide. The closer the waveguide is to the slit walls, the higher the nonlinear effects are, but with the cost of increasing propagation losses due to parasitic coupling to surface plasmon polaritons at the metal interfaces. We analyze several optical waveguide configurations and define a figure of merit that allows us to design the optimal configuration. We find that designs with less overlap of the THz and optical fields but also with lower losses are better than designs where both these parameters are higher. The estimated terahertz field incident onto the metallic nanoslit required to manipulate the waveguide mode has reasonable values which can be achieved in practice.  相似文献   

14.
This special edition is dedicated to original papers covering topics with the areas of interest of COST ACTION MP1204 whose main objective is to advance novel materials, concepts and device designs for generating and detecting THz (0.3–10 THz) and Mid Infrared (10–100 THz) radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. The results achieved benefit from the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We are building a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. In this sense THz and MIR are considered jointly, the driving force for both regimes being applications. The main emphasis of the research presented here is on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up companies and hospitals. The strong coupling of THz radiation and material excitations has potential to improve the quantum efficiency of THz devices.  相似文献   

15.
Terahertz(THz) direct detectors based on superconducting niobium nitride(NbN) hot electron bolometers(HEBs) with microwave(MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature(T_N) of 403 K working at 4.2 K and 0.65 THz. As a result, the noise equivalent power of 1.5 pW/Hz~(1/2) and the response time of 64 ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2 K and 0.65 THz.  相似文献   

16.
High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.  相似文献   

17.
王磊  肖芮文  葛士军  沈志雄  吕鹏  胡伟  陆延青 《物理学报》2019,68(8):84205-084205
液晶是一种性能优异的可调控光电功能材料,基于液晶的太赫兹器件有着广泛的应用前景,但高性能太赫兹功能器件的研发仍处于初级阶段.本文综述了太赫兹领域液晶材料与器件的研究现状,探讨了液晶技术与太赫兹技术相结合的发展趋势.  相似文献   

18.
A review is presented of work over the last 10 years which has been aimed at trying to produce a Si‐based THz quantum cascade laser. Potential THz applications and present THz sources will be briefly discussed before the materials issues with the Si/SiGe system is discussed. Waveguide designs and waveguide losses will be presented. Experimental measurements of the non‐radiative lifetimes for intersubband transitions in Si1‐xGex quantum wells will be presented along with theory explaining the important scattering mechanisms which determine the lifetimes. Examples of p‐type Si/SiGe quantum cascade designs with the experimental electroluminescence will be reviewed and examples of n‐type Si‐based designs will be presented. In the conclusion designs and structures will be discussed with the greatest potential to achieve an electrically pumped Si‐based THz laser.  相似文献   

19.
We demonstrate an external-cavity (EC) beam combining of 4-channel quantum cascade lasers (QCLs) with an output coupler which makes different QCL beams propagating coaxially. A beam combining efficiency of 35% (up to 75% near threshold) is obtained with a beam quality M2 of 5.5. A peak power of 0.64 W is achieved at a wavelength of 4.7 μm. The differences of spot characteristic between coupled and uncoupled are also showed in this letter. The QCLs in this EC system do not have heat crosstalk so that the system can be used for high power beam combining of QCLs.  相似文献   

20.
周康  黎华  万文坚  李子平  曹俊诚 《物理学报》2019,68(10):109501-109501
群速度色散会限制太赫兹量子级联激光器频率梳的稳定以及频谱宽度.对于太赫兹量子级联激光器频率梳,其色散主要由器件增益、波导损耗、材料损耗引起.研究基于4.2 THz量子级联激光器双面金属波导结构,通过建立德鲁德模型,利用有限元法计算了激光器的波导损耗;器件未钳制的增益由费米黄金定则计算得到,结合增益钳制效应,计算了器件子带电子跃迁吸收以及镜面损耗,得到了器件钳制后的增益;利用Kramers-Kronig关系得到了器件的增益、波导损耗、材料损耗引起的色散,结果表明器件的激射区域存在非常严重的色散(–8×10~5—8×10~5 fs~2/mm).同时,计算了一种基于Gires-Tournois干涉仪结构的色散,结果表明,该结构的色散具有周期性,可以用于太赫兹量子级联激光器的色散补偿.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号