首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The chemical shift of TMS is commonly assumed to be zero. However, it varies by over 1 ppm for 1H and 4 ppm for 13C and shows a correlation with the physical properties of the solvent. Using the commonly accepted convention that TMS always resonates at zero leads to significant errors when comparing chemical shifts in different solvents. A new method for measuring absolute chemical shift with a conventional NMR spectrometer is demonstrated. The observed chemical shift is corrected by measuring and correcting for susceptibility and shape factor. Practical suggestions are made for modifying the current chemical shift standard while maintaining compatibility with earlier literature.  相似文献   

2.
59Co triple-quantum (3Q) MAS and single-pulse MAS NMR spectra of K3Co(CN)6 have been obtained at 14.1 T and used in a comparison of these methods for determination of small chemical shift anisotropies for spin I = 7/2 nuclei. From the 3QMAS NMR spectrum a spinning sideband manifold in the isotropic dimension with high resolution is reconstructed from the intensities of all spinning sidebands in the 3QMAS spectrum. The chemical shift anisotropy (CSA) parameters determined from this spectrum are compared with those obtained from MAS NMR spectra of (i) the complete manifold of spinning sidebands for the central and satellite transitions and of (ii) the second-order quadrupolar lineshapes for the centerband and spinning sidebands from the central transition. A good agreement between the three data sets, all of high precision, is obtained for the shift anisotropy (delta(sigma) = delta(iso) - delta(zz)) whereas minor deviations are observed for the CSA asymmetry parameter (eta(sigma)). The temperature dependence of the isotropic 59Co chemical shift has been studied over a temperature range from -28 to +76 degrees C. A linear and positive temperature dependence of 0.97 ppm/degree C is observed.  相似文献   

3.
D-,L-和DL-奥硝唑随温度变化的太赫兹光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
利用太赫兹时域光谱 (terahertz time domain spectroscopy,THz-TDS) 技术,在6 K到298 K之间,测量了D-,L-和DL-奥硝唑随温度变化的太赫兹(THz)光谱.实验结果表明,在0.3到2.5 THz波段,在常温时D-和L-奥硝唑的吸收峰几乎相同,但与DL-奥硝唑的吸收峰存在差异,到低温时这种差异变得更加明显,为鉴别奥硝唑旋光异构体与其消旋体提供了新的方法;低温时观察到了在常温时很难分辨的吸收峰,为振动模式指认提供更多的信息;随着温度的升高,吸收峰中心频率朝着低频的方向单调偏移,通过对实验数据的拟合,发现振动模式随温度变化符合Bose-Einstein统计规律.最后对奥硝唑旋光异构体及其消旋体分子进行量子化学计算,并模拟得到0.2—2.5 THz的低频振动光谱,根据光谱实验结果,从分子水平上对其特征吸收信号进行了理论分析. 关键词: 振动光谱 奥硝唑 对映异构体 THz时域光谱技术  相似文献   

4.
Bicelles composed of the long-chain biphenyl phospholipid TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC) and the short-chain phospholipid DHPC align with their bilayer normals parallel to the direction of the magnetic field. In contrast, in typical bicelles the long-chain phospholipid is DMPC or DPPC, and the bilayers align with their normals perpendicular to the field. Samples of the membrane-bound form of the major coat protein of Pf1 bacteriophage in TBBPC bicelles are stable for several months, align magnetically over a wide range of temperatures, and yield well-resolved solid-state NMR spectra similar to those obtained from samples aligned mechanically on glass plates or in DMPC bicelle samples "flipped" with lanthanide ions so that their bilayer normals are parallel to the field. The order parameter of the TBBPC bicelle sample decreases from approximately 0.9 to 0.8 upon increasing the temperature from 20 degrees C to 60 degrees C. Since the frequency spans of the chemical shift and dipolar coupling interactions are twice as large as those obtained from proteins in DMPC bicelles without lanthanide ions, TBBPC bicelles provide an opportunity for structural studies with higher spectral resolution of the metal-binding membrane proteins without the risk of chemical or spectroscopic interference from the added lanthanide ions. In addition, the large temperature range of these samples is advantageous for the studies of membrane proteins that are unstable at elevated temperatures and for experiments requiring measurements as a function of temperature.  相似文献   

5.
The (129)Xe chemical shift of xenon dissolved in isotropic liquids is very sensitive to solvent density, which in turn is dependent on the sample temperature. Therefore, the (129)Xe chemical shift can be used as the basis of a thermometer for measuring actual sample temperatures in NMR experiments. Good accuracy can be achieved, but the thermometer is particularly useful in monitoring temperature stability. In the present case, carbon tetrachloride (CCl(4)), ethylbromide (C(2)H(5)Br), and deuterated chloroform (CDCl(3)) were chosen as solvents because of their large thermal expansion coefficient.  相似文献   

6.
It has been previously shown that the amplitude of the ultrasound-stimulated acoustic emission (USAE) signal is sensitive to tissue temperature and, therefore, can help detect it. Its amplitude, however, is sensitive to both acoustical and mechanical parameters, that at most frequencies have opposite effects due to temperature. In this paper, we explore the feasibility of using a frequency shift of the resonant peaks of the USAE signal for monitoring the tissue stiffness variation with temperature. In a numerical simulation, the variation of the frequency shift at different temperatures is shown. Then, in a series of experiments involving a gel phantom and porcine muscle tissue, the frequency shift variation is shown to follow the known stiffness changes due to temperature. It is also shown that this shift indicates reversible changes as well as the onset of thermal coagulative necrosis. The necrosis is marked by a monotonically increasing positive frequency shift. It was thus shown that the USAE spectrum peaks undergo a negative shift (or, downshift) when the stiffness decreases and a positive shift (or, upshift) when the stiffness increases. The experimental frequency shifted around a peak at 22.1-22.5 kHz within a range of -250 to 80 Hz and -200 to 250 Hz for the gel and muscle tissue for the temperatures of 25-70 and 30-70 degrees C, respectively. Simulation and ex vivo experimental results indicate that the USAE frequency shift method can help decouple the mechanical from the acoustical parameter dependence as well as detect the onset of thermal coagulative necrosis.  相似文献   

7.
The temperature dependence of 207Pb chemical shift in magic angle spinning (MAS) NMR spectrum of Pb(NO3)2 provides a sensitive method to calibrate sample temperatures in MAS NMR. The temperature dependence is uniform in the temperature range between 30 degrees C and 400 degrees C. The NMR sensitivity and the line width are also favorable.  相似文献   

8.
The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C–C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C–C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.  相似文献   

9.
We describe the construction and operation of a variable temperature (VT) system for a high field fast magic angle spinning (MAS) probe. The probe is used in NMR investigations of biological macromolecules, where stable setting and continuous measurement of the temperature over periods of several days are required in order to prevent sample overheating and degradation. The VT system described is used at and below room temperature. A vortex tube is used to provide cooling in the temperature range of -20 to 20 degrees C, while a liquid nitrogen-cooled heat exchanger is used below -20 degrees C. Using this arrangement, the lowest temperature that is practically achievable is -140 degrees C. Measurement of the air temperature near the spinning rotor is accomplished using a fiber optic thermometer that utilizes the temperature dependence of the absorption edge of GaAs. The absorption edge of GaAs also has a magnetic field dependence that we have measured and corrected for. This dependence was calibrated at several field strengths using the well-known temperature dependence of the (1)H chemical shift difference of the protons in methanol.  相似文献   

10.
用硝酸腐蚀法处理得到了具有表面增强拉曼光谱 (SERS)活性的银表面。在表面温度于 - 1 90℃~30℃变化时 (上升和下降 ) ,分别测定了吸附在银表面上的腺嘌呤、嘌呤和四并苯的表面增强拉曼光谱 ,观察到一系列有关拉曼峰频率和强度的可逆变化。结果表明 ,温度降低 ,吸附分子SERS中受电磁增强机制作用的振动的拉曼位移发生蓝移 ,同时峰强度也有变化 ;而受化学增强机制作用的振动的拉曼位移则不受温度的影响。温度的变化导致分子平面可弯曲分子在金属表面的取向发生变化 ,如腺嘌呤和嘌呤在高温下取直立态 ,而平面的对称分子 (如四并苯 )在表面上的取向则不受温度的影响。  相似文献   

11.
The shift and half-width of In λ 3039 and In λ3256 was measured in Ar and He under pressures up to one thousand p.s.i. The temperature of the absorption tube was 850°C for In λ 3039 and 930°C for In λ 3256. The van der Waals interaction constant for In/Ar was found to be 1·5 x 10-30 and 8·6 x 10-31 cm6/sec for In λ 3039/Ar and In λ 3256/Ar respectively. In λ 3256 exhibited a small red shift in He for the range of r.d. (from 1 to 16) of He employed.  相似文献   

12.
Experimental investigation ofd Nd:YAG monolithic nonplanar ring lasers operated at 1123 nm wavelength is presented. Stable single-frequency 1123 nm laser output has been obtained with successful suppression of the strong 1064 nm radiation. Single-frequency output power of 1.25 W is demonstrated with a pump power of 3.98 W at 808 nm, which gives a slope efficiency of 39%. The laser frequency tuning range is over 3 GHz, and the average tuning rate with temperature is -2.6 GHz/ degrees C. A strong iodine absorption line can be covered within the laser frequency tuning range.  相似文献   

13.
Concentration dependent experimental measurements of the ethanol hydroxyl proton chemical shift σH for binary solutions were carried out. The solvents used were carbon tetrachloride (CCl4), benzene, chloroform, acetonitrile, acetone and dimethylsulphoxide (DMSO). The chemical shift values range from 0.69 ppm (relative to TMS) for dilute ethanol (extrapolated to infinite dilution) in CCl4 to 5.34 ppm for neat liquid ethanol. Ab initio calculations of the ethanol-solvent hydrogen bond energies show a correlation with the values for the chemical shift. The hydrogen bond energies for ethanol-solvent dimers range from 0.63 kcal mol?1 for ethanol-CCl4 to 9.34 kcal mol?1 for ethanol-DMSO. Theoretical calculations show a linear correlation between the deuterium quadrupole coupling parameter XD ar d the isotropic proton chemical shift σH: XD(kHz) = 291.48 ? 14.96 σH, where σH is the proton chemical shift in ppm relative to TMS (R 2 = 0.99). Using the concentration dependent chemical shift data and this equation, XD ia observed to range from 280 kHz for very dilute concentrations in CCl4, where the primary species is ethanol monomer, to 210 kHz for the neat liquid that is comprised primarily of cyclic pentamers.  相似文献   

14.
Ma Y  Ye X  Hao Y  Xu G  Xu G  Liu D 《Ultrasonics sonochemistry》2008,15(3):227-232
Hesperidin, an abundant and inexpensive bioflavonoid in Penggan (Citrus reticulata) peel, has been reported to possess a wide range of pharmacological properties. Ultrasonic extraction is an effective technique for the isolation of bioactive compounds from vegetable materials. In this study, the application of ultrasonic method was shown to be more efficient in extracting hesperidin from Penggan (C. reticulata) peel than the classical method. The effects of main ultrasonic-assisted extraction conditions on extraction yields of hesperidin from Penggan (C. reticulata) peel were evaluated, including extraction solvents, solvent volume, temperature, extraction time, ultrasonic power, ultrasonic frequency. Results showed that solvent, frequency and processing temperature were the most important factors for improving the extracting yields of hesperidin. When performed at the same temperature under the same time using three frequencies, methanol as the solvent improved the extraction yield evidently compared with ethanol or isopropanol; by comparison of the frequency influence, the yield of hesperidin was higher at 60 kHz than at 20 kHz and 100 kHz. The optimum ultrasonic conditions were determined as: methanol, frequency of 60 kHz, extraction time of 60 min, and temperature of 40 degrees C. In addition, the ultrasonic power had a weak effect on the yields of hesperidin within the experimental range. Extending ultrasonic treatment times did not result in degradation of hesperidin; the rotary beaker for materials can increase the yields of hesperidin.  相似文献   

15.
Chemical shift referencing in MAS solid state NMR   总被引:7,自引:0,他引:7  
Solid state 13C magic angle spinning (MAS) NMR spectra are typically referenced externally using a probe which does not incorporate a field frequency lock. Solution NMR shifts on the other hand are more often determined with respect to an internal reference and using a deuterium based field frequency lock. Further differences arise in solution NMR of proteins and nucleic acids where both 13C and 1H shifts are referenced by recording the frequency of the 1H resonance of DSS (sodium salt of 2,2-dimethyl-2-silapentane-5-sulphonic acid) instead of TMS (tetramethylsilane). In this note we investigate the difficulties in relating shifts measured relative to TMS and DSS by these various approaches in solution and solids NMR, and calibrate adamantane as an external 13C standard for solids NMR. We find that external chemical shift referencing of magic angle spinning spectra is typically quite reproducible and accurate, with better than +/-0.03 ppm accuracy being straight forward to achieve. Solid state and liquid phase NMR shifts obtained by magic angle spinning with external referencing agree with those measured using typical solution NMR hardware with the sample tube aligned with the applied field as long as magnetic susceptibility corrections and solvent shifts are taken into account. The DSS and TMS reference scales for 13C and 1H are related accurately using MAS NMR. Large solvent shifts for the 13C resonance in TMS in either deuterochloroform or methanol are observed, being +0.71 ppm and -0.74 ppm from external TMS, respectively. The ratio of the 13C resonance frequencies for the two carbons in solid adamantane to the 1H resonance of TMS is reported.  相似文献   

16.
The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190–350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol-d1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation (R2 = 0.99) between XD, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: XD(kHz) = 297.60 ? 15.28δH. The temperature dependence of XD ranges from 199.5kHz at 190K to 221.4 kHz at 350 K. Using the values for XD and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 Å3, the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.  相似文献   

17.
We observe vibrational states by photoassociation spectroscopy of cold He(2 ^{3}S) atoms. Photoassociation resonances are detected as peaks in the Penning ionization rate over a frequency range of 20 GHz below the atomic 2 ^{3}S_{1}-2 ^{3}P_{2} transition frequency. We have observed three vibrational series, of which two can be identified. A possible mechanism to explain the observed increase of the Penning ionization rate is discussed.  相似文献   

18.
Acoustic and dynamic mechanical properties of a polyurethane rubber   总被引:2,自引:0,他引:2  
Acoustical and dynamic mechanical measurements were carried out on a commercial polyurethane rubber, DeSoto PR1547. The sound speed and attenuation were measured over the range from 12.5 to 75 kHz and 3.9 to 33.6 degrees C. Shear modulus was measured from 10(-4) to 2 Hz and -36 to 34 degrees C. The peak heights of the shear loss tangent varied with temperature, demonstrating thermorheological complexity. At higher temperatures, time-temperature superpositioning could be applied, with the shift factors following the Williams-Landel-Ferry equation. From the combined acoustical and mechanical measurements, values for the dynamic bulk modulus were determined. Moreover, superposition of the bulk modulus data was achieved using the shift factors determined from the dynamic mechanical shear measurements. Finally, this work illustrates the capability and the working rules of acoustical measurements in a small tank.  相似文献   

19.
Liu W  Talghader JJ 《Optics letters》2003,28(11):932-934
Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22 degrees to 72 degrees C. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 lambda/4 pairs) mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 degrees C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.  相似文献   

20.
Using residual chemical shift anisotropies (RCSAs) measured in a weakly aligned stem-loop RNA, we examined the carbon chemical shift anisotropy (CSA) tensors of nucleobase adenine C2, pyrimidine C5 and C6, and purine C8. The differences between the measured RCSAs and the values back-calculated using three nucleobase carbon CSA sets [D. Stueber, D.M. Grant, 13C and 15N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551; D. Sitkoff, D.A. Case, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. NMR Spectrosc. 32 (1998) 165-190; R. Fiala, J. Czernek, V. Sklenar, Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids, J. Biomol. NMR 16 (2000) 291-302] reported previously for mononucleotides (1.4 Hz) is significantly smaller than the predicted RCSA range (-10-10 Hz) but remains larger than the RCSA measurement uncertainty (0.8 Hz). Fitting of the traceless principal CSA values to the measured RCSAs using a grid search procedure yields a cytosine C5 CSA magnitude (CSAa=(3/2.(delta11(2)+delta22(2)+delta33(2)))1/2=173+/-21 ppm), which is significantly higher than the reported mononucleotide values (131-138 ppm) and a guanine C8 CSAa (148+/-13 ppm) that is in very good agreement with the mononucleotide value reported by solid-state NMR [134 ppm, D. Stueber, D.M. Grant, 13C and (15)N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551]. Owing to a unique sensitivity to directions normal to the base plane, the RCSAs can be translated into useful long-range orientational constraints for RNA structure determination even after allowing for substantial uncertainty in the nucleobase carbon CSA tensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号