首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A ubiquitous phenomenon in networks is the presence of communities within which the network connections are dense and between which they are sparser. This paper proposes a max-flow algorithm in bipartite networks to detect communities in general networks. Firstly, we construct a bipartite network in accordance with a general network and derive a revised max-flow problem in order to uncover the community structure. Then we present a local heuristic algorithm to find the optimal solution of the revised max-flow problem. This method is applied to a variety of real-world and artificial complex networks, and the partition results confirm its effectiveness and accuracy.  相似文献   

2.
Acyclic networks are a class of complex networks in which links are directed and do not have closed loops. Here we present an algorithm for transforming an ordinary undirected complex network into an acyclic one. Further analysis of an acyclic network allows one to find the structural properties of the network. With our approach one can find the communities and key nodes in complex networks. Also we propose a new parameter of complex networks which can mark the most vulnerable nodes of the system. The proposed algorithm can be applied to finding communities and bottlenecks in general complex networks.  相似文献   

3.
Agglomerative clustering is a well established strategy for identifying communities in networks. Communities are successively merged into larger communities, coarsening a network of actors into a more manageable network of communities. The order in which merges should occur is not in general clear, necessitating heuristics for selecting pairs of communities to merge. We describe a hierarchical clustering algorithm based on a local optimality property. For each edge in the network, we associate the modularity change for merging the communities it links. For each community vertex, we call the preferred edge that edge for which the modularity change is maximal. When an edge is preferred by both vertices that it links, it appears to be the optimal choice from the local viewpoint. We use the locally optimal edges to define the algorithm: simultaneously merge all pairs of communities that are connected by locally optimal edges that would increase the modularity, redetermining the locally optimal edges after each step and continuing so long as the modularity can be further increased. We apply the algorithm to model and empirical networks, demonstrating that it can efficiently produce high-quality community solutions. We relate the performance and implementation details to the structure of the resulting community hierarchies. We additionally consider a complementary local clustering algorithm, describing how to identify overlapping communities based on the local optimality condition.  相似文献   

4.
Clustering coefficient and community structure of bipartite networks   总被引:2,自引:0,他引:2  
Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.  相似文献   

5.
J.C. Nacher  T. Akutsu 《Physica A》2011,390(23-24):4636-4651
Many real-world systems can be represented by bipartite networks. In a bipartite network, the nodes are divided into two disjoint sets, and the edges connect nodes that belong to different sets. Given a bipartite network (i.e. two-mode network) it is possible to construct two projected networks (i.e. one-mode networks) where each one is composed of only one set of nodes. While network analyses have focused on unipartite networks, considerably less attention has been paid to the analytical study of bipartite networks. Here, we analytically derive simple mathematical relationships that predict degree distributions of the projected networks by only knowing the structure of the original bipartite network. These analytical results are confirmed by computational simulations using artificial and real-world bipartite networks from a variety of biological and social systems. These findings offer in our view new insights into the structure of real-world bipartite networks.  相似文献   

6.
In a network described by a graph, only topological structure information is considered to determine how the nodes are connected by edges. Non-topological information denotes that which cannot be determined directly from topological information. This paper shows, by a simple example where scientists in three research groups and one external group form four communities, that in some real world networks non-topological information (in this example, the research group affiliation) dominates community division. If the information has some influence on the network topological structure, the question arises as to how to find a suitable algorithm to identify the communities based only on the network topology. We show that weighted Newman algorithm may be the best choice for this example. We believe that this idea is general for real-world complex networks.  相似文献   

7.
吴果林  顾长贵  邱路  杨会杰 《中国物理 B》2017,26(12):128901-128901
Projection is a widely used method in bipartite networks. However, each projection has a specific application scenario and differs in the forms of mapping for bipartite networks. In this paper, inspired by the network-based information exchange dynamics, we propose a uniform framework of projection. Subsequently, an information exchange rate projection based on the nature of community structures of a network(named IERCP) is designed to detect community structures of bipartite networks. Results from the synthetic and real-world networks show that the IERCP algorithm has higher performance compared with the other projection methods. It suggests that the IERCP may extract more information hidden in bipartite networks and minimize information loss.  相似文献   

8.
《Physics letters. A》2014,378(32-33):2350-2354
Link prediction and spurious link detection in complex networks have attracted increasing attention from both physical and computer science communities, due to their wide applications in many real systems. Related previous works mainly focus on monopartite networks while these problems in bipartite networks are not yet systematically addressed. Containing two different kinds of nodes, bipartite networks are essentially different from monopartite networks, especially in node similarity calculation: the similarity between nodes of different kinds (called inter-similarity) is not well defined. In this letter, we employ the local diffusion processes to measure the inter-similarity in bipartite networks. We find that the inter-similarity is asymmetric if the diffusion is applied in different directions. Accordingly, we propose a bi-directional hybrid diffusion method which is shown to achieve higher accuracy than the existing diffusion methods in identifying missing and spurious links in bipartite networks.  相似文献   

9.
We study the community structure of networks representing voting on resolutions in the United Nations General Assembly. We construct networks from the voting records of the separate annual sessions between 1946 and 2008 in three different ways: (1) by considering voting similarities as weighted unipartite networks; (2) by considering voting similarities as weighted, signed unipartite networks; and (3) by examining signed bipartite networks in which countries are connected to resolutions. For each formulation, we detect communities by optimizing network modularity using an appropriate null model. We compare and contrast the results that we obtain for these three different network representations. We thereby illustrate the need to consider multiple resolution parameters and explore the effectiveness of each network representation for identifying voting groups amidst the large amount of agreement typical in General Assembly votes.  相似文献   

10.
In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results.  相似文献   

11.
Research collaboration network is a typical bipartite network that consists of papers and authors. This bipartite network could be transformed into one-mode networks by projection. In this paper, we used three different projections to construct three co-authorship networks. Topological features of three co-authorship networks are measured and analyzed in order to understand the influence of projections on network features. The measurement results show that different projections could lead to different topological features. Therefore, to reflect the existing reality more precisely, projection method is suggested to be considered when we investigate the structure of scientific collaborations and/or assess the status, impact and influence of researchers and their institutions.  相似文献   

12.
In this paper, we propose a well targeted algorithm (GAS algorithm) for detecting communities in high clustered networks by presenting group action technology on community division. During the processing of this algorithm, the underlying community structure of a clustered network emerges simultaneously as the corresponding partition of orbits by the permutation groups acting on the node set are achieved. As the derivation of the orbit partition, an algebraic structure r-cycle can be considered as the origin of the community. To be a priori estimation for the community structure of the algorithm, the community separability is introduced to indicate whether a network has distinct community structure. By executing the algorithm on several typical networks and the LFR benchmark, it shows that this GAS algorithm can detect communities accurately and effectively in high clustered networks. Furthermore, we compare the GAS algorithm and the clique percolation algorithm on the LFR benchmark. It is shown that the GAS algorithm is more accurate at detecting non-overlapping communities in clustered networks. It is suggested that algebraic techniques can uncover fresh light on detecting communities in complex networks.  相似文献   

13.
The investigation of community structure in networks is an important issue in many disciplines, which still remains a challenging task. First, complex networks often show a hierarchical structure with communities embedded within other communities. Moreover, communities in the network may overlap and have noise, e.g., some nodes belonging to multiple communities and some nodes marginally connected with the communities, which are called hub and outlier, respectively. Therefore, a good algorithm is desirable to be able to not only detect hierarchical communities, but also to identify hubs and outliers. In this paper, we propose a parameter-free hierarchical network clustering algorithm DenShrink. By combining the advantages of density-based clustering and modularity optimization methods, our algorithm can reveal the embedded hierarchical community structure efficiently in large-scale weighted undirected networks, and identify hubs and outliers as well. Moreover, it overcomes the resolution limit possessed by other modularity-based methods. Our experiments on the real-world and synthetic datasets show that DenShrink generates more accurate results than the baseline methods.  相似文献   

14.
Online communications at web portals represents technology-mediated user interactions, leading to massive data and potentially new techno-social phenomena not seen in real social mixing. Apart from being dynamically driven, the user interactions via posts is indirect, suggesting the importance of the contents of the posted material. We present a systematic way to study Blog data by combined approaches of physics of complex networks and computer science methods of text analysis. We are mapping the Blog data onto a bipartite network where users and posts with comments are two natural partitions. With the machine learning methods we classify the texts of posts and comments for their emotional contents as positive or negative, or otherwise objective (neutral). Using the spectral methods of weighted bipartite graphs, we identify topological communities featuring the users clustered around certain popular posts, and underly the role of emotional contents in the emergence and evolution of these communities.  相似文献   

15.
Detection of community structures in the complex networks is significant to understand the network structures and analyze the network properties. However, it is still a problem on how to select initial seeds as well as to determine the number of communities. In this paper, we proposed the detecting overlapping communities based on vital nodes algorithm(DOCBVA), an algorithm based on vital nodes and initial seeds to detect overlapping communities. First, through some screening method, we find the vital nodes and then the seed communities through the pretreatment of vital nodes. This process differs from most existing methods, and the speed is faster. Then the seeds will be extended. We also adopt a new parameter of attribution degree to extend the seeds and find the overlapping communities. Finally, the remaining nodes that have not been processed in the first two steps will be reprocessed. The number of communities is likely to change until the end of algorithm. The experimental results using some real-world network data and artificial network data are satisfactory and can prove the superiority of the DOCBVA algorithm.  相似文献   

16.
We propose a new method for detecting communities based on the concept of communicability between nodes in a complex network. This method, designated as N-ComBa K-means, uses a normalized version of the adjacency matrix to build the communicability matrix and then applies K-means clustering to find the communities in a graph. We analyze how this method performs for some pathological cases found in the analysis of the detection limit of communities and propose some possible solutions on the basis of the analysis of the ratio of local to global densities in graphs. We use four different quality criteria for detecting the best clustering and compare the new approach with the Girvan-Newman algorithm for the analysis of two "classical" networks: karate club and bottlenose dolphins. Finally, we analyze the more challenging case of homogeneous networks with community structure, for which the Girvan-Newman completely fails in detecting any clustering. The N-ComBa K-means approach performs very well in these situations and we applied it to detect the community structure in an international trade network of miscellaneous manufactures of metal having these characteristics. Some final remarks about the general philosophy of community detection are also discussed.  相似文献   

17.
Detection of community structures in the weighted complex networks is significant to understand the network structures and analysis of the network properties. We present a unique algorithm to detect overlapping communities in the weighted complex networks with considerable accuracy. For a given weighted network, all the seed communities are first extracted. Then to each seed community, more community members are absorbed using the absorbing degree function. In addition, our algorithm successfully finds common nodes between communities. The experiments using some real-world networks show that the performance of our algorithm is satisfactory.  相似文献   

18.
X. Liu  T. Murata 《Physica A》2010,389(7):1493-1500
A modularity-specialized label propagation algorithm (LPAm) for detecting network communities was recently proposed. This promising algorithm offers some desirable qualities. However, LPAm favors community divisions where all communities are similar in total degree and thus it is prone to get stuck in poor local maxima in the modularity space. To escape local maxima, we employ a multistep greedy agglomerative algorithm (MSG) that can merge multiple pairs of communities at a time. Combining LPAm and MSG, we propose an advanced modularity-specialized label propagation algorithm (LPAm+). Experiments show that LPAm+ successfully detects communities with higher modularity values than ever reported in two commonly used real-world networks. Moreover, LPAm+ offers a fair compromise between accuracy and speed.  相似文献   

19.
Fuzzy analysis of community detection in complex networks   总被引:1,自引:0,他引:1  
Dawei Zhang  Yong Zhang  Kaoru Hirota 《Physica A》2010,389(22):5319-5327
A snowball algorithm is proposed to find community structures in complex networks by introducing the definition of community core and some quantitative conditions. A community core is first constructed, and then its neighbors, satisfying the quantitative conditions, will be tied to this core until no node can be added. Subsequently, one by one, all communities in the network are obtained by repeating this process. The use of the local information in the proposed algorithm directly leads to the reduction of complexity. The algorithm runs in O(n+m) time for a general network and O(n) for a sparse network, where n is the number of vertices and m is the number of edges in a network. The algorithm fast produces the desired results when applied to search for communities in a benchmark and five classical real-world networks, which are widely used to test algorithms of community detection in the complex network. Furthermore, unlike existing methods, neither global modularity nor local modularity is utilized in the proposal. By converting the considered problem into a graph, the proposed algorithm can also be applied to solve other cluster problems in data mining.  相似文献   

20.
In this paper, we present a new approach to extract communities in the complex networks with considerable accuracy. We introduce the core-vertex and the intimate degree between the community and its neighboring vertices. First, we find the core-vertices as the initial community. These core-vertices are then expanded using intimate degree function during extracting community structure from the given network. In addition, our algorithm successfully finds common nodes between communities. Experimental results using some real-world networks data shows that the performance of our algorithm is satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号