首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
马文  陆彦文 《物理学报》2013,62(3):36201-036201
冲击波阵面反映材料在冲击压缩下的弹塑性变形行为以及屈服强度、应变率条件等宏观量, 还与冲击压缩后的强度变化联系. 本文使用分子动力学方法, 模拟研究了冲击压缩下纳米多晶铜中的动态塑性变形过程, 考察了冲击波阵面和弹塑性机理对晶界存在的依赖, 并与纳米多晶铝的冲击压缩进行了比较. 研究发现: 相比晶界对纳米多晶铝的贡献而言, 纳米多晶铜中晶界对冲击波阵面宽度的影响较小; 并且其塑性变形机理主要以不全位错的发射和传播为主, 很少观察到全位错和形变孪晶的出现. 模拟还发现纳米多晶铜的冲击波阵面宽度随着冲击应力的增加而减小, 并得到了冲击波阵面宽度与冲击应力之间的定量反比关系, 该定量关系与他人纳米多晶铜模拟结果相近, 而与粗晶铜的冲击压缩实验结果相差较大.  相似文献   

2.
Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent −1 is observed.  相似文献   

3.
The method of molecular dynamics is applied to the study of the effect of post-cascade shock waves generated in a solid irradiated by high-energy particles on the heterogeneous formation of dislocation loops in a simulated gold crystal containing a spherical nanovoid, which is subjected to shear deformation. The interaction between atoms is described with the use of a potential calculated by the embedded atom method. Shock waves are created by assigning a velocity exceeding the speed of sound in the simulated material to the boundary atoms of the computational cell. It is shown that two regions of increased mechanical stress are formed under shear deformation near the surface of a nanovoid, which are the sources of emerging partial dislocations. The main mechanism for the formation of dislocations is the displacement of a group of atoms towards the inner surface of the void, which does not contradict modern ideas about the heterogeneous formation of dislocations. It is shown that, when the values of shear stress are insufficient for the formation of dislocations, loop emission can be initiated by a post-cascade shock wave generated in the computational cell. As temperature increases, the number of nucleated dislocation loops increases, and, in addition, the formation of Lomer–Cottrell dislocations is observed, which is attributed to the additional tangential stresses created by the unloading wave. In this case, the formation of a stable dislocation loop in which the linear tension is balanced by the Peach–Koehler force due to external stress requires that the shock wave front affect the regions of increased stress near the void surface while propagating through the simulated crystal.  相似文献   

4.
粘性物质中正激波稳定性分析   总被引:1,自引:1,他引:0  
于明  刘福生 《计算物理》2008,25(5):543-548
用线性稳定性理论,分析粘性物质中的正激波稳定性问题.粘性物质中任意强度的一维激波,其稳定性问题可归结为处理复数范围内的特征值问题,该特征值问题由两个一阶常微分方程及一个二阶常微分方程构成.这些常微分方程的系数依赖于流动的基本流场的物理量及其梯度.所获得的特征值问题由一个四阶精度的有限差分离散求解.分析考虑物质粘性的金属铝中的正激波稳定性,可以看出,正激波运动是稳定的,并且激波速度对波前和波后的小扰动量的衰减有相反的作用,而物质粘性有致稳的作用.  相似文献   

5.
The processes of breaking, solution, and formation of hydrates behind a shock wave of moderate amplitude were studied experimentally in water with carbon dioxide bubbles under different initial static pressures. It is shown that an increase in the static pressure in a gas-liquid medium leads to reduction of critical relative amplitude of the shock wave, corresponding to starting development of Kelvin — Helmholtz instability and bubble splitting into small gas inclusions behind the shock wave front. It is shown that the rates of carbon dioxide solution and hydrate formation behind the shock wave front are close by the value; their dependences on medium and wave parameters are determined. Calculations by the model of gas hydration behind the shock wave are presented. The work was financially supported by the Russian Foundation for Basic Research (grants Nos. 06-01-00142 and 06-08-00657).  相似文献   

6.
When a gas bubble in a liquid interacts with an acoustic wave near a solid surface, the bubble first expands and then collapses. In this paper, a mathematical framework combining the Gilmore model and the method of characteristics is presented to model the shock wave emitted at the end of the bubble collapse. It allows to describe the liquid velocity at the shock front as a function of the radial distance to the bubble center in the case of spherical bubble collapse. Numerical calculations of the liquid velocity at the shock front have shown that this velocity increases with the acoustic amplitude and goes through a maximum as a function of the initial bubble radius. Calculations for different gas state equations inside the bubble show that the Van der Waals law predicts a slightly higher liquid velocity at the shock front than when considering a perfect gas law. Finally, decreasing the value of the surface tension at the bubble/liquid interface results in an increase of the liquid velocity at the shock front. Our calculations indicate that the strength of the shock waves emitted upon spherical bubble collapse can cause delamination of typical device structures used in microelectronics.  相似文献   

7.
为了探究熵层对扫掠激波/湍流边界层干扰特性的影响规律,采用仿真方法对尖鳍/钝板物理模型进行研究。结果表明:扫掠激波上游的熵层厚度随着平板前缘钝化半径的增大而增加,同时边界层厚度也随着熵层厚度的增加而增加。熵层的引入并不改变扫掠激波/湍流边界层干扰固有的准锥形相似特性,也不会改变拟锥原点(virtual conical origin,VCO)的位置,仅会改变干扰形成的上游影响线和分离线的角度。扫掠激波/湍流边界层干扰形成的锥形主旋涡和角涡的尺度随着熵层厚度的增加而增大。上游熵层的引入增大了下游扫掠激波/湍流边界层干扰区的总压损失,但扫掠激波/湍流边界层干扰自身造成的相对总压损失并不受上游熵层的影响。   相似文献   

8.
刘小林  易仕和  牛海波  陆小革 《物理学报》2018,67(21):214701-214701
在马赫数6、单位雷诺数3.1×106/m的条件下对半锥角7°直圆锥边界层稳定性开展了实验研究.以激光聚焦于流场中局部空间而产生的膨胀冲击波作为人工添加的小扰动,分析了该扰动对高超声速圆锥边界层流动稳定性的影响.实验中利用响应频率达到兆赫兹量级的高频压力传感器对圆锥壁面脉动压力进行测量,通过对压力数据进行短时傅里叶分析和功率谱分析发现,相比于不添加激光聚焦扰动的结果,添加激光聚焦扰动使边界层中第二模态波的出现位置提前,且扰动波的幅值大幅度地增加,在相同的流向范围内,激光聚焦扰动将边界层中的扰动波从线性发展阶段推进到非线性发展阶段,其对边界层中扰动波发展的促进效果明显.同时,激光聚焦位置的不同对边界层中扰动波的发展也具有不同的影响.当激光直接聚焦于圆锥壁面X=100 mm位置时,边界层中频率为90 kHz的扰动波幅值增长最快,在X=500 mm的位置处其幅值放大倍数为3.81,相比而言当激光聚焦位置位于圆锥前方自由来流中时,边界层幅值增长最快的扰动波频率大幅减小为73 kHz,相同范围内,其幅值放大倍数为4.51倍.由此可见,当激光聚焦位置位于圆锥上游的自由来流中时,其对边界层中扰动波的影响更为显著.  相似文献   

9.
The propagation of a small but finite shock disturbance through gas contained within a cylindrical tube is examined theoretically for the case where both the hoop elasticity and radial inertia of the tube are taken into account. Governing equations so derived are found to admit a non-dispersive wave of variable pressure behind the advancing shock front in direct contrast with the situation existing for an initially sharp-fronted infinitesimal disturbance where no steady wave form is possible. Detailed calculations are carried out for the case where the gas filling the tube is air. Results show that increases in either the tube or shock strength are sufficient to make the pressure distribution behind the wave front approach that which would exist in a rigid tube under similar conditions.  相似文献   

10.
A. N. Dremin 《高压研究》2013,33(5-6):361-364
Abstract

Shock wave chemistry, a new scientific trend, deals with investigations of chemical aspects of the substance state under this new type of effect. Indeed, shock wave effect is not a greater imposition than pressure and temperature actions. Characteristic features of the effect are the tremendous rates of substance loading and subsequent unloading. The effects result in a substance in a strongly non- equilibrium state. The lifetime of the state is governed by the relaxation process of those phenomena which are provoked by shock waves in the substance. For instance, in the case of substance consisting of complex molecules with a large number of internal degrees of freedom, differing strongly in excitation times, all kinetic parts of the shock energy are at first absorbed by the translational degrees of freedom inside the shock wave front. Then, the energy is redistributed to the vibrational degrees of freedom. The non-equilibrium state time is not longer than the excitation time of the most slowly excited vibrational degrees of freedom (1010-10?9 s). The same order of magnitude is the relaxation time of liquid substance polarization caused by dipolar molecules mechanically turning under the shock discontinuity zone effect. In polymers the zone turns some separate groups of polymer molecule atoms. In such a case the relaxation period, on the contrary, may last as long as it can. As far as “hot are concerned, their lifetime is determined by thermal relaxation regularities and it depends on their size. The hot spots in solids appear during the shock compression process at the sites of an imperfect substance structure. In liquids the hot spots can orighate when a shock wave front passes through negative density fluctuations. It transforms the fluctuations of very small size and of high probability into some positive temperature regions of large size and extremely low probability at equilibrium state behind the wave front. The hot spots in perfect solids (possibly in liquids too) appear due to the effect of shear stresses in shock front. Pointed and lengthy defects of solid structure occur under the effect. The lengthy defects appear in the shock wave front due to the transition from one-dimensional to volume compression. The transition takes place if the wave intensity is larger than the dynamic elastic limit of the solid under investigation. In brittle materials the transition results in their grinding into fragments and in the relative displacement of the fragments. Some liquid melted layers of substance appear between the fragments in the process of displacement. Their lifetime is also determined by the thermal relaxation regularities and probably is small. Nevertheless, the layers obviously govern the spall strength of brittle solids and promote solid-phase shock reactions. The defects created in solids by the shock effect can exist for a very long time if the solid substance residual temperature is lower than its recrystallization temperature. Therefore, solid substance treatment by shocks of proper intensity can increase their chemical reactivity.  相似文献   

11.
李齐  董颖  赵雅甜  赵瑞 《气体物理》2021,6(5):26-33
采用k-ω-γ转捩模式对某新型飞行器外形的典型流动特征和边界层失稳特性进行了分析.研究结果表明,横流是影响飞行器大面积转捩的主要因素.随着高度增加,来流Reynolds数减小,迎风面和背风面的转捩起始位置均向下游移动.随着攻角增加,头部附近背风面的展向压力梯度增大,横流效应增强,转捩起始位置向上游移动;另一方面攻角增加导致头部激波增强,波后迎风面密度显著增大,边界层外缘Reynolds数增大,导致迎风面转捩提前发生.0°攻角下背风面中心线附近由压缩面诱导的流动分离导致转捩提前,产生"凸"字型转捩型线,5°攻角时该流动分离发生于转捩之后,"凸"字型转捩型线消失.   相似文献   

12.
考虑几何结构参数对激波聚焦触发爆轰波的复杂影响,对H2/Air预混气的环形射流激波聚焦起爆现象开展了数值模拟研究,详细分析了不同隔板深度条件下的激波聚焦过程、流场演化特征以及爆轰波参数变化规律。研究结果表明,凹腔内激波聚焦诱导的局部爆炸以及隔板前缘处射流形成"卷吸涡"是引起爆轰波触发的两个重要机制,而隔板深度是影响环形射流激波聚焦起爆性能的关键因素。随着隔板深度的增加,凹腔内激波聚焦的强度逐步增强,回传的能量损失有所减小,进而导致爆燃转爆轰的距离与时间显著缩短。此外,当隔板深度由1 mm逐渐增加至3 mm时,爆轰波自持传播稳定性呈现出先降低后升高的变化趋势,产生这一现象的主要原因是爆轰波强度与三波点运动的相互作用。  相似文献   

13.
A three-dimensional(3D)BurgersJ equation adopting perturbative methodology is derived to study the evolution of a shock wave with Landau quantized magnetic field in relativistic quantum plasma.The characteristics of a shock wave in such a plasma under the influence of magnetic quantization,relativistic parameter and degenerate electron density are studied with assistance of steady state solution.The magnetic field has a noteworthy control,especially on the shock wave's amplitude in the lower range of the electron density,whereas the amplitude in the higher range of the electron density reduces remarkably.The rate of increase of shock wave potential is much higher(lower)with a magnetic Held in the lower(higher)range of electron density.With the relativistic factor,the shock wave's amplitude increases significantly and the rate of increase is higher(lower)for lower(higher)electron density.The combined effect of the increase of relativistic factor and the magnetic field on the strength of the shock wave,results in the highest value of the wave potential in the lower range of the degenerate electron density.  相似文献   

14.
Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and micro solid particles. Equilibrium flow condition is supposed to be maintained and energy is varying which is continuously supplied by inner expanding surface. It is found that similarity solution exists under the constant initial density. The comparison between the solutions obtained in gravitating and non-gravitating medium is done. It is found that the shock strength increases with an increase in gravitational parameter or ratio of the density of solid particles to the initial density of the gas, whereas an increase in the radiation parameter has decaying effect on the shock waves.  相似文献   

15.
Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and micro solid particles. Equilibrium flow condition is supposed to be maintained and energy is varying which is continuously supplied by inner expanding surface. It is found that similarity solution exists under the constant initial density. The comparison between the solutions obtained in gravitating and non-gravitating medium is done. It is found that the shock strength increases with an increase in gravitational parameter or ratio of the density of solid particles to the initial density of the gas, whereas an increase in the radiation parameter has decaying effect on the shock waves.  相似文献   

16.
The nonlinear analysis of the behavior of a shock wave on a Hugoniot curve fragment that allows for the ambiguous representation of shock wave discontinuity has been performed. The fragment under consideration includes a section where the condition L > 1 + 2M is satisfied, which is a linear criterion of the instability of the shock wave in media with an arbitrary equation of state. The calculations in the model of a viscous heat-conductive gas show that solutions with an instable shock wave are not implemented. In the one-dimensional model, the shock wave decays into two shock waves or a shock wave and a rarefaction wave, which propagate in opposite directions, or can remain in the initial state. The choice of the solution depends on the parameters of the shock wave (position on the Hugoniot curve), as well as on the form and intensity of its perturbation. In the two-dimensional and three-dimensional calculations with a periodic perturbation of the shock wave, a “cellular” structure is formed on the shock front with a finite amplitude of perturbations that does not decrease and increase in time. Such behavior of the shock wave is attributed to the appearance of the triple configurations in the inclined sections of the perturbed shock wave, which interact with each other in the process of propagation along its front.  相似文献   

17.
A new condition is obtained for the linear instability of a plane front of an intense shock wave in an arbitrary medium, which is determined by the finiteness of the viscosity. It is shown that the shock front instability occurs due to dissipative instability of the flow behind the front, which is analogous to the flow instability in the boundary layer. It is found that in the low-viscosity limit, one-dimensional longitudinal perturbations increase much faster than two-dimensional (corrugation) perturbations. The results are compared with the available data of experimental observation and numerical simulation of instability of shock waves. The comparison shows a better agreement between the new absolute shock instability as compared to the condition of such instability in the classical D’yakov theory disregarding viscosity.  相似文献   

18.
用自行设计激波管点火测试技术,实验研究了温度范围760-1380K间入射激波诱导下环氧丙烷的点火机理。利用激波管压力传感器测定了H*(486.1) 和O (470.5nm)随激波诱导强度变化的点火时间特征。实验结果表明:在低马赫数下氢氧自由基出现时间较接近,1.5-2.5马赫间随激波诱导强度增大而线性减小;而马赫大于2.5后,氧自由基的出现时间迅速减小,是由于高活化能的氧自由基的点火时间对强激波较敏感,而诱导强度大于3.5马赫后对两者点火影响区别就下明显了。实验数据将有益于含能材料点火时间的研究。  相似文献   

19.
用自行设计激波管点火测试技术,实验研究了温度范围760-1380K间入射激波诱导下环氧丙烷的点火机理。利用激波管压力传感器测定了H*(486.1) 和O (470.5nm)随激波诱导强度变化的点火时间特征。实验结果表明:在低马赫数下氢氧自由基出现时间较接近,1.5-2.5马赫间随激波诱导强度增大而线性减小;而马赫大于2.5后,氧自由基的出现时间迅速减小,是由于高活化能的氧自由基的点火时间对强激波较敏感,而诱导强度大于3.5马赫后对两者点火影响区别就下明显了。实验数据将有益于含能材料点火时间的研究。  相似文献   

20.
Steady-state distributions of excited atom concentrations are found ahead of a plane shock wave. The problem is solved for a two-level approximation. An exact analytical solution of the integro-differential equation describing the distribution of the concentration is developed by using the Weiner-Hopf method. The asymptotic behaviour in regions both far away and close to the shock front is investigated as a function of the parameters involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号