首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用热处理烧结方法制备了含CsPbBr_3钙钛矿量子点的硅酸盐基氟氧化物玻璃陶瓷(SiO_2-Al_2O_3-Li_2O-AlF_3-LiF)。通过X射线衍射分析了玻璃的自析晶现象与量子点生长之间的关系;TEM透射电镜分析了量子点的形貌特征;荧光光谱、吸收光谱和CIE色坐标等表征分析了量子点的发光特性。结果表明,最佳条件制备得到的含CsPbBr_3量子点的玻璃陶瓷材料可实现512 nm强绿光发射,半峰宽22.80 nm。将该玻璃陶瓷与365 nm紫外芯片封装构建绿光发光二极管(LED),有望替代绿色荧光粉成为新型固体发光领域的关键材料。  相似文献   

2.
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉。通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH_4Cl,BaF_2)对Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉结构、发光性能和热稳定的影响。XRD图谱对比结果表明,制备的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉XRD图与理论计算得到的图谱几乎一致。Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉在360~450nm有很强的激发强度,并且在440nm激发下发射峰值波长为530nm的发射光。随着Eu~(2+)离子浓度的增加,发射光谱出现了红移,且在Eu~(2+)离子浓度约为6%时发生了浓度猝灭现象。当添加NH_4Cl和BaF_2作为助溶剂,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度有一定提高。与未添加助溶剂的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度相比,添加NH_4Cl助溶剂后发光强度增加了70%。此外,当温度升高至150℃时,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉具有良好的热稳定性。这些发光性能均表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉。  相似文献   

3.
采用水热法合成了不同Tb~(3+)浓度掺杂的单分散球形PaWO_4绿色荧光粉。通过粉末X射线衍射(XRD)和扫描电子显微镜(SEM),能量色散光谱仪(EDS)来表征荧光粉的晶体结构、颗粒大小、形貌及成分;激发光谱和发射光谱以及荧光衰减曲线来表征荧光粉的荧光性能。XRD分析确认不同Tb~(3+)浓度掺杂的BaWO_4具有白钨矿结构;SEM图像显示不同Tb~(3+)浓度掺杂BaWO_4为单分散的球形荧光粉以及颗粒大小为2~4μm。研究Tb~(3+)离子掺杂浓度对发光强度的影响,结果表明,荧光粉中Tb~(3+)离子的最佳掺杂原子数分数为12%。发射光谱表明在254 nm的UV光激发下12%BaWO_4:Tb荧光粉样品与商用绿色荧光粉LaPO_4:Ce,Tb发光强度相当。由于Tb掺杂的BaWO_4绿色荧光粉具有优良的发光性能和容易制备的特点,有望成为新一代的绿色荧光粉。  相似文献   

4.
为了提高钙钛矿纳米晶CsPbX_(3)(X=Cl,Br,I)在水或热等环境中的稳定性,本文采用热注射法合成了3-氨丙基-三乙氧基硅烷(APTES)修饰的CsPbBr_(3)纳米晶,在此基础上,以正硅酸四甲基酯(TMOS)为硅源制备了CsPbBr_(3)@SiO_(2)核壳结构纳米颗粒。通过X射线衍射、透射电子显微镜和荧光光谱仪等测试手段对样品的结构、形貌、光谱特性及稳定性等进行了分析。结果表明,CsPbBr_(3)纳米晶表面形成了SiO_(2)壳层,同时,CsPbBr_(3)@SiO_(2)纳米颗粒仍保持优异的光学性能。更重要的是,SiO_(2)壳层显著提高了CsPbBr_(3)的水、热稳定性,CsPbBr_(3)@SiO_(2)在60℃加热30min后发光强度可以保持初始强度的81%,浸水100min后发光强度仍保持初始强度的75.2%。此外,我们设计了CsPbBr_(3)@SiO_(2)-聚二甲基硅氧烷(PDMS)复合薄膜,实现了CsPbBr_(3)@SiO_(2)在柔性显示与荧光防伪方面的应用,有望为柔性显示和荧光防伪材料的开发提供参考。  相似文献   

5.
一种新型的白光LED用绿色荧光粉Ca_8MgLu(PO_4)_7∶Tb~(3+)   总被引:2,自引:1,他引:1  
采用高温固相法合成一种单一纯相绿色荧光粉Ca8Mg Lu(PO4)7∶Tb3+,通过X射线衍射(XRD)、荧光光谱(PLE,PL)和荧光寿命曲线研究了Ca8Mg Lu(PO4)7∶Tb3+的发光性能。Ca8Mg Lu(PO4)7∶Tb3+能被378nm的近紫外光激发,Tb3+发生5D4-7F5跃迁发出绿光,色坐标为(0.324,0.592)。Ca8Mg Lu(PO4)7∶Tb3+的量子效率可达84%,热猝灭性能良好:在150℃和200℃的发光强度积分分别是25℃的90.71%和86.36%。研究结果表明Ca8Mg Lu(PO4)7∶Tb3+是一种理想的适于NUV-LED芯片激发的白光LED用绿色荧光粉。  相似文献   

6.
为了提高钙钛矿(CsPbX_3,X=Cl,Br,I)量子点的荧光稳定性,实现钙钛矿量子点在下一代平板显示与固态光源中的长期应用,研究了钾元素对量子点荧光性能的影响。首先,采用热注入法合成了CsPbBr_3钙钛矿量子点。接着,用油酸钾与上述钙钛矿量子点进行反应,制备了钾元素修饰的钙钛矿量子点。最后,将这些钙钛矿量子点应用于发光二极管的发光层。实验结果表明,当油酸钾的含量为20μL/mL时,钾元素修饰的量子点的荧光性能优于未修饰的量子点。相比于未修饰的量子点所制备的器件,钾元素修饰的量子点所制备器件的最大亮度从1 845 cd/m~2增加到4 300 cd/m~2,最大电流效率从0.3 cd/A增加到1.3 cd/A。因此钾元素的引入可以有效地抑制量子点表面缺陷的产生,减少荧光量子产率的损失,增强量子点的荧光稳定性,实现更优越的器件性能。  相似文献   

7.
采用高温固相法制备了一系列Tb~(3+)掺杂方钠石荧光粉样品Na_8Al_6Si_6O_(24)Cl_2∶Tb~(3+)。通过XRD、SEM、荧光光谱、热猝灭分析仪对样品的晶体结构及其发光性能进行研究。样品晶粒由大小不等、形状不规则的多面体块状颗粒构成。样品在242 nm(对应于Tb~(3+)离子自旋允许的7FJ→9DJ跃迁)激发下发出单色性能较好的绿色荧光,相应的色坐标为(0.324 0,0.587 2),色纯度为87.4%,发光量子效率为0.74。随着Tb~(3+)掺杂浓度的增加,出现浓度猝灭现象。当浓度为5%时,样品的绿色荧光最强。研究结果表明,样品满足PDP器件的使用要求,可作为三基色材料中的绿色组分。  相似文献   

8.
以Sr_3N_2、Eu_2O_3、AlN和Li_3N为原料,利用高压氮化烧结制备了系列高显色LED用红色荧光粉(Sr_(0.96),Eu_(0.04))LiAl_3N_4。通过XRD、SEM图像和激发发射光谱研究了不同Sr_3N_2用量、不同助熔剂对荧光粉颗粒和发光性能的影响。XRD及XRD Rietveld精修结果表明,1.3倍Sr_3N_2原料所得的粉体具有更纯的晶相,此时发光强度达到最大。研究了分别以氯化物和氟化物作为助熔剂对烧结粉体发光效果以及颗粒形貌的影响,结果表明LiCl和NH_4F的助熔效果较好。将LiCl和NH_4F作为组合助剂,研究了不同组合比例对荧光粉发光性能的影响,实验确定组合比例为1∶1时可得到颗粒分散性较好的窄谱带红光荧光粉,发光强度比未使用助熔剂时提高了近4倍。红色荧光粉(Sr_(0.96),Eu_(0.04))LiAl_3N_4粉体与GAG535绿粉组合进行4 000 K白光封装测试,结果表明该器件具有较高的发光效率,显色指数Ra高达91.9,适用于高显色指数的封装方案。  相似文献   

9.
利用碳热还原法制备了LaSi_3N_5∶Ce~(3+)蓝色荧光粉,重点研究了原料中掺C量和退火对样品纯度及发光性能的影响。通过X射线衍射仪和荧光光谱仪分别表征样品的晶体结构和发光性能。研究结果表明:1 600℃时能够合成主相为LaSi_3N_5∶Ce~(3+)的荧光粉。在360nm紫外光激发下样品可获得波段范围在380~600nm的单峰宽带发射谱,归结于Ce~(3+)的5d-4f的能级跃迁。当n_C/n_(La)=4/1时样品发光强度达到最大,并且光谱出现先红移后蓝移的现象。经过退火的样品的发光强度与退火前相比提高了60%~345%。将热处理后的n_C/n_(La)=4/1的样品与商用YAG混合涂覆在UV芯片上(λ_(em)=365nm)封装成WLED,证实了LaSi_3N_5∶Ce~(3+)在白光LED领域潜在的应用价值。  相似文献   

10.
采用水热-热解法制备了可用于实现白光LED的Y2.96Al5O12∶0.04Ce3+荧光粉,通过X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)及荧光光谱(PL)等对Y2.96Al5O12∶0.04Ce3+荧光粉的物相、形貌及光致发光性能进行了表征。结果表明:水热-热解法制备出了物相纯净、分散性良好的球形Y2.96Al5O12∶0.04Ce3+粉体,该荧光粉可被460nm蓝光有效激发,发射光谱为峰值在550nm的一宽带,且水热-热解法得到的YAG∶Ce3+粉体发射强度优于传统高温固相法合成的YAG:Ce3+荧光粉;通过积分球耦合荧光光谱仪对荧光粉与蓝光芯片配合所得白光LED的量子效率进行了测试,结果表明:水热-热解法制备的Y2.96Al5O12∶0.04Ce3+荧光粉绝对量子效率为88.40%,外量子效率为78.64%,色坐标为(0.453 8,0.531 8),色温为358 4K,该方法制备的Y2.96Al5O12∶0.04Ce3+荧光粉稳定性及数据测定的重现性较好,是一种适用于暖白光LED的高性能黄色荧光粉。  相似文献   

11.
采用高温固相法合成Sr_3P_4O_(13):Ce~(3+),Tb~(3+)荧光粉,通过X射线衍射仪、扫描电子显微镜和荧光光谱仪分析该荧光粉的物相组成、颗粒形貌和发光性能。结果表明:Sr_3P_4O_(13):Ce~(3+)的发射光谱和Sr_3P_4O_(13):Tb~(3+)的激发光谱在300~400 nm有重叠;在近紫外光(290 nm)激发下,该荧光粉发射出Ce~(3+)的蓝光(300~420 nm)和Tb~(3+)的黄绿光(480~500 nm和530~560 nm);当Ce~(3+)的摩尔分数为0.08,Tb~(3+)的摩尔分数从0.01增大到0.09时,Ce~(3+)的4f→5d电子跃迁将能量传递至Tb~(3+)的~5D_3能级和~5D_4能级,Ce~(3+)的发光强度逐渐降低,Tb~(3+)的发光强度逐渐增强,表明Sr_3P_4O_(13)基质中存在Ce~(3+)→Tb~(3+)的能量传递;当掺杂Tb~(3+)的摩尔分数为0.09时,能量传递效率可高达86.46%;样品Sr_(2.61)P_4O_(13):0.24Ce~(3+),0.15Tb~(3+)的色坐标在绿光区域,因此Ce~(3+)和Tb~(3+)共掺杂的Sr_3P_4O_(13)荧光粉可作为绿色荧光材料应用于白色发光二极管。  相似文献   

12.
采用高温固相反应法制备了Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)系列荧光粉,研究Y~(3+)离子掺入对荧光粉发光性能的影响。对于Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入主要起到稳定Eu~(2+)价态的作用,避免Eu~(2+)氧化为Eu~(3+),从而提高Sr Si_2O_2N_2∶Eu~(2+)的发光性能。对于Ca Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入除了稳定Eu~(2+)价态作用外,还能有效减小Eu~(2+)取代Ca~(2+)后晶格膨胀引起的应力,提高Eu~(2+)在晶格中的溶解度。Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)(x=0,0.15,0.3,0.6,0.75,0.95)系列荧光粉中随着Ca含量的增加,共掺Y~(3+)离子对样品发光强度的提高程度也随之增加(20%~80%)。  相似文献   

13.
《光学学报》2021,41(4):152-159
采用热注入法合成了锡掺杂CsPbBr_3量子点。透射电子显微镜和X射线衍射仪(XRD)的表征结果显示,少量锡掺杂可以部分替代铅,对量子点有钝化作用,减少了量子点的表面缺陷,提高了量子点的光致发光量子效率(PLQY)。当掺杂铅和锡的物质的量比为9\:1时,量子点的PLQY从未掺杂时的21.0%提高到了40.4%。随着锡掺杂量的增加,XRD谱中出现了杂相,光致发光减弱,PLQY由少量锡掺杂(铅和锡的物质的量比为9\:1)量子点的40.4%降低到CsPb_(0.6)Sn_(0.4)Br_3的10.4%。少量锡掺杂的CsPb_(0.9)Sn_(0.1)Br_3具有最强的光致发光和电致发光,其光致发光峰位为511 nm, PLQY为40.4%,电致发光峰位为512 nm,电致发光亮度为343.0 cd/m~2,是未掺杂CsPbBr_3量子点发光二极管亮度的2.5倍。本实验证明了采用少量锡掺杂CsPbBr_3(CsPb_(0.9)Sn_(0.1)Br_3)可以降低量子点的表面缺陷,提高量子点的光致发光与电致发光性能。  相似文献   

14.
传统光聚集器热效应明显、结构复杂、成本昂贵。作为替代,荧光太阳集光器具有许多显著优势并能够有效降低太阳能电池的发电成本,因此受到广泛关注。本文通过传统热注入法合成了全无机钙钛矿CsPbBr_3量子点,并在此基础上设计了基于CsPbBr_3量子点的荧光太阳集光原型器件。通过TEM测试和必要的光学表征,证实本文合成的CsPbBr_3量子点具有典型的立方体结构、76.8%的荧光量子产率、512 nm的发光中心波长和22 nm的中心波长半高宽。此外,结合蒙特卡洛智能优化算法,建立了基于CsPbBr_3量子点的荧光太阳集光器的理论计算模型,确定了全无机钙钛矿量子点最优掺杂浓度和最佳平均波长集光效率。仿真结果表明,在量子点掺杂浓度为2.1×10~(-5) mol/L时,最优的集光效率达到5.4%。本文提出的蒙特卡洛光子追踪模拟过程将为未来荧光太阳集光器参数设计提供科学的计算方法。  相似文献   

15.
唐鹿 《发光学报》2015,36(9):1006-1012
采用溶剂热法成功地制备出了YVO4∶Tm3+纳米荧光粉,并用X射线衍射仪(XRD)、透射电子显微镜(TEM)、紫外分析仪、紫外可见(UV-Vis)吸收光谱和光致发光(PL)光谱对YVO4∶Tm3+纳米荧光粉进行测试和表征。实验结果表明,YVO4∶Tm3+纳米荧光粉可发出明亮的蓝光,色纯度和发光强度都很高,而且具有良好的热稳定性。因此,YVO4∶Tm3+纳米荧光粉是一种十分适用于场发射显示器的荧光粉。  相似文献   

16.
采用室温重结晶法制备CsPbBr_3量子点,分别利用六种常用的极性溶剂对量子点粗液进行高速离心提纯,监测提纯过程中每一步骤后的光致发光光谱,并采用吸收光谱,荧光寿命、X射线衍射分析和透射电镜等表征方法系统表征了六种极性溶剂提纯得到的CsPbBr_3量子点.研究表明,通过六种极性溶剂提纯,都可以得到结晶度良好的呈立方体形态的立方相CsPbBr_3量子点;在利用六种不同极性溶剂进行提纯过程中,第二次离心得到的上清液具有最为统一的半峰宽和峰值波长;除乙酸乙酯外,第二次离心得到的上清液具有最高的量子产出;比较而言,通过正丙醇、异丙醇、正丁醇特别是异丁醇提纯得到的CsPbBr_3量子点具有较高的发光性能.  相似文献   

17.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

18.
SrLiAl_3N_4∶Eu~(2+)红色荧光粉的制备与发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
使用高温固相法于还原气氛中合成了SrLiAl_3N_4∶Eu~(2+)荧光粉并研究了其晶体结构和发光性质。样品均可以被蓝光或紫外光有效激发发射红光。XRD和SEM图谱显示合成了单相SrLiAl3N4。粉体的激发光谱在200~600nm波长范围内呈现出双峰宽带激发带,在267nm、474nm处分别有一个激发峰。发射光谱仅有一个宽带发射峰,峰值在654nm处,属于Eu~(2+)离子的5d→4f特征跃迁。荧光粉发光强度与Eu~(2+)离子掺杂摩尔分数之间的关系表明:随着Eu~(2+)离子掺杂摩尔分数的增加,粉体发光强度先上升后下降,最佳掺杂摩尔分数为0.4%,继续增大Eu~(2+)离子的掺杂量会发生浓度猝灭现象。所准备的SrLiAl_3N_4∶Eu~(2+)荧光粉具有较好的热稳定性和较高的量子效率。  相似文献   

19.
采用两步烧结法低温制备了Sr_2MgAl_(22)O_(36)∶Mn~(4+)-(SiO_2-Al_2O_3-ZnO-BaO)荧光玻璃(SMA∶Mn~(4+)-PiG)。通过X射线衍射、扫描电镜、光致激发和发射光谱、荧光衰减曲线等手段对其物相、成分与发光性能进行了研究。实验结果表明,形成PiG后,SMA∶Mn~(4+)荧光粉的物相和元素组成保持不变。不同SAM∶Mn~(4+)含量的PiG样品在328 nm光激发下,在661 nm处均显示强的发射带,归属于荧光粉中Mn~(4+)的~2E→~4A_2跃迁,发光光谱与植物光敏色素的红区吸收光谱匹配良好。随着荧光粉含量的增加,SAM∶Mn~(4+)-PiG的发光强度逐渐增大。15%SMA∶Mn~(4+)-PiG样品的内、外量子效率分别为26%和20%,低于SMA∶Mn~(4+)荧光粉的59%和40%。相比于SMA∶Mn~(4+)荧光粉,荧光玻璃的吸收效率和热稳定性略有提高。通过与高功率紫外芯片封装,SMA∶Mn~(4+)-PiG红光LED器件在100 mA驱动电流下展现了最高的电致发光强度。  相似文献   

20.
采用溶胶-凝胶法合成了系列Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)红色荧光粉。通过X射线粉末衍射、荧光光谱等对合成的荧光粉样品进行表征,并系统地研究了烧结温度、Eu~(3+)掺杂浓度对样品发光强度的影响。结果表明:该荧光粉能被近紫外光(393 nm)有效激发;当烧结温度为800℃、Eu~(3+)的掺杂量为5.0%(摩尔分数)时,样品发射出的荧光强度最强。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)样品的色坐标(0.684,0.316)与红色标准值(x=0.670,y=0.330)非常接近。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)是一种很好的新红色荧光粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号