首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Current Applied Physics》2018,18(11):1403-1409
In the present study, the SrMoO4:Eu3+ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of SrMoO4:Eu3+ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of Eu3+. The optimal synthesis conditions were obtained: hydro-thermal temperature is 145 °C, co-precipitation temperature is 35 °C, the calcining time is 2.5 h, and the doping amount of activator Eu3+ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about 0.2 μm. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that SrMoO4: Eu3+ phosphor efficiently convert radiation of 394 nm–592 and 616 nm for red light, and the luminescence intensity of SrMoO4:Eu3+ phosphors is improved. SrMoO4:Eu3+ phosphors may be a potential application for enhancing the efficiency of white LEDs.  相似文献   

2.
Eu3+-doped ZrO2 phosphors with different charge compensators (Li+, Na+, K+) were prepared by the sol-gel method. The properties of the as-obtained samples are characterized by X-ray diffraction, scanning electron microscope, photoluminescence spectra, and decay curve. The results show that ZrO2:Eu3+ phosphors with different charge compensation are mixed phase of tetragonal and monoclinic phase, and the volume fraction of tetragonal phase of ZrO2:Eu3+/Na+ phosphor is bigger than the other phosphors. The phosphors can emit strong red light at 606~616 nm (5D07F2) excited by ultraviolet light (395 nm). Compared with two charge compensation patterns in the ZrO2:Eu3+, it has been found that ZrO2:Eu3+ phosphors used Na+ as charge compensator show greatly enhanced red emission under 395 nm excitation and longer luminescence lifetime.  相似文献   

3.
SrMoO4 doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr1−xEuxMoO4 powders, where x = 0.01; 0.03 and 0.05, were synthesized by Complex Polymerization (CP) Method. The structural and optical properties of the SrMoO4:Eu3+ were analyzed by powder X-ray diffraction patterns, Fourier Transform Infra-Red (FTIR), Raman Spectroscopy, and through Photoluminescent Measurements (PL). Only a crystalline scheelite-type phase was obtained when the powders were heat-treated at 800 °C for 2 h, 2θ = 27.8° (100% peak). The excitation spectra of the SrMoO4:Eu3+Em. = 614 nm) presented the characteristic band of the Eu3 + 5L6 transition at 394 nm and a broad band at around 288 nm ascribed to the charge-transfer from the O (2p) state to the Mo (4d) one in the SrMoO4 matrix. The emission spectra of the SrMoO4:Eu3+ powders (λExc. = 394 and 288 nm) show the group of sharp emission bands among 523–554 nm and 578–699 nm, assigned to the 5D17F0,1and 2 and 5D07F0,1,2,3 and 4, respectively. The band related to the 5D07F0 transition indicates the presence of Eu3+ site without inversion center. This hypothesis is strengthened by the fact that the band referent to the 5D07F2 transition is the most intense in the emission spectra.  相似文献   

4.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing white light-emitting diodes (LED).  相似文献   

5.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

6.
Yb3+-Tm3+ co-doped up-conversion powder phosphors using Zn(AlxGa1-x)2O4 (ZAGO) as the host materials were synthesized via solid-state reaction successfully. In addition, the morphology, structural characterization and up-conversion luminescent properties were all investigated by scanning electron microscope (SEM), x-ray diffraction (XRD) and fluorescence spectrophotometer (F-7000), respectively. Under the excitation of a 980 nm laser, all as-prepared powders can carry out blue emission at about 477 nm (corresponding to 1G4 → 3H6 transition of Tm3+ ions), and red emission at about 691 nm (attributed to 3F3 → 3H6 transition of Tm3+ ions). Also, the influence of doping Al3+ ions were investigated. In brief, the doping of Al3+ ions has no effect on the position of emission peak. Howbeit the up-conversion efficiency and intensity of ZAGO:Yb,Tm phosphors are stronger than ZGO:Yb,Tm and ZAO:Yb,Tm phosphors, while the crystallinity is the opposite. More particularly, all as-prepared powder phosphors emit strong luminescence, which is observable by the naked eye, demonstrating the potential applications in luminous paint, luminescent dye, etc.  相似文献   

7.
Powder samples of NaMgPO4 doped with Eu2+ and Ce3+ were prepared and their photoluminescence spectra were systemically studied. Energy transfer from Ce3+ to Eu2+ in NaMgPO4 phosphor was observed by investigating the optical properties from photoluminescence spectra in Eu2+ or Ce3+ singly doped and Eu2+–Ce3+ codoped sodium magnesium orthophosphates, NaMgPO4. The enhancement of UV excitation is attributed to energy transfer from Ce3+ to Eu2+, and Ce3+ plays a role as a sensitizer. Ce3+–Eu2+ codoped NaMgPO4 phosphors in which Eu2+ can be efficiently excited by 390 nm are potential candidates for phosphor-converted LEDs.  相似文献   

8.
Undoped and Eu3+ doped BaTa2O6 phosphors were synthesized via solid state reaction method and characterized by using XRD, SEM-EDS and photoluminescence (PL) analyses. The XRD results revealed that the crystal structure of BaTa2O6 allowed up to 10 mol% levels of Eu3+ ions due to the TTB characteristic network of adjacent octahedrals. SEM-EDS analyses confirmed the formation of BaTa2O6 structure and EuTaO4 secondary phase. BaTa2O6:Eu3+ phosphors exhibited orange and red emissions at 592.2 nm and 615.7 nm in the visible region respectively. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of the BaTa2O6:Eu3+ phosphors that excited at λ ex = 400 nm ranged from orangish-red to pinkish-red depending on increasing Eu3+ concentration.  相似文献   

9.
Eu2+ and Mn2+ co-doped SrMg2(PO4)2 phosphors with blue and red two emission bands were prepared by the high temperature solid state method and their luminescent properties have been investigated as a function of activator and co-activator concentrations. Resonance-type energy transfers from Eu2+ to Mn2+ were discovered by directly overlapping the Eu2+ emission spectrum and the excitation spectrum of Mn2+. Efficiencies of energy transfer were also calculated according to the changes of relative intensities of Eu2+ and Mn2+ emission. According to the principle of energy transfer, we demonstrated that the phosphor SrMg2(PO4)2:Eu2+,Mn2+ with double emission bands exhibited a great potential as a phosphor for ultraviolet light-emitting diodes and the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+. PACS 78.55.-m  相似文献   

10.
Nanorods and nanoplates of Y2O3:Eu3+ powders were synthesized through the thermal decomposition of the Y(OH)3 precursors using a microwave-hydrothermal method in a very short reaction time. These powders were analyzed by X-ray diffraction, field emission scanning electron microscopy, Fourrier transform Raman, as well as photoluminescence measurements. Based on these results, these materials presented nanoplates and nanorods morphologies. The broad emission band between 300 and 440 nm ascribed to the photoluminescence of Y2O3 matrix shifts as the procedure used in the microwave-hydrothermal assisted method changes in the Y2O3:Eu3+ samples. The presence of Eu3+ and the hydrothermal treatment time are responsible for the band shifts in Y2O3:Eu3+ powders, since in the pure Y2O3 matrix this behavior was not observed. Y2O3:Eu3+ powders also show the characteristic Eu3+ emission lines at 580, 591, 610, 651 and 695 nm, when excited at 393 nm. The most intense band at 610 nm is responsible for the Eu3+ red emission in these materials, and the Eu3+ lifetime for this transition presented a slight increase as the time used in the microwave-hydrothermal assisted method increases.  相似文献   

11.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

12.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

13.
Sr6BP5O20:Eu2+ phosphor was prepared by the solid-state reaction method under a weak reductive atmosphere and the photoluminescence properties were studied systematically. The bluish-green emission band of Sr6BP5O20:Eu2+ phosphor is peaking at 475 nm, and the excitation bands are broad with peaks at about 290 and 365 nm with a shoulder around 390 nm, respectively. By combining with Ga(In)N-based near-ultraviolet LEDs, a bluish-green LED was fabricated based on the Sr6BP5O20:Eu2+ phosphor, and a novel intense white LED was fabricated based on the bluish-green phosphor Sr6BP5O20:Eu2+ and the red phosphor (Sr,Ca)5(PO4)3Cl:Eu2+,Mn2+. When this two-phosphor white LED is operated under 20-mA forward-bias current at room temperature, the Commission Internationale de l’Eclairage(CIE) chromaticity coordinates (x,y), the correlated color temperature Tc, and the color rendering index Ra are calculated to be (0.3281,0.3071), 5687 K, and 87.3, respectively. The dependence of the bluish-green and two-phosphor white LEDs on different forward-bias currents from 5 mA to 50 mA shows a similar behavior. As the current increases, the relative intensity simultaneously increases. The CIE chromaticity coordinates (x,y) of the two-phosphor white LED tend to decrease. Consequently, the correlated color temperature Tc increases from 3800 K to 9400 K and the color rendering index Ra of the two-phosphor white LED increases from 83.4 to 91.8 simultaneously. PACS 07.60.-j; 42.70.-a; 71.55.Eq  相似文献   

14.
Eu3+-doped (La, Ln) PO4 (Ln = Gd and Y) phosphors were prepared by a facile co-precipitation method. Their structures and luminescent properties under UV excitation were investigated. Structural characterization of the nanostructured luminescence material was carried out with X-ray powder diffraction analysis. Scanning electron microscopy was carried out to understand the surface morphological features and grain sizes with 50–100 nm. It is found that (La, Gd) PO4:Eu3+ phosphors have the same crystal structure as LaPO4:Eu3+, which is monoclinic with a little different lattice parameters. In the case of (La, Y) PO4:Eu3+ phosphors, however, the gradual change from monoclinic to tetragonal structure of host lattice was observed, as the amount of Y ion increased. From the photoluminescence spectra for (La, Ln) PO4:Eu3+ (Ln = Gd and Y), the emission transition 5D0 → 7F1 has been found to be more prominent over the normal red emission transition 5D0 → 7F2. Furthermore, the size influence on the products was discussed. It was observed that the spectral features possess sharp and bright emission for potential applications on the monitors of the television and some other related electronic systems, in observing the images in orange–red color.  相似文献   

15.
YVO4:Yb3+,Er3+; YVO4:Yb3+,Tm3+; and YVO4:Yb3+,Er3+,Tm3+ were all synthesized via sol-gel method with a subsequent thermal treatment. Specifically, YVO4:Yb3+,Er3+,Tm3+ phosphors were prepared with different annealing temperatures to study the influence of temperature. The transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffractometer (XRD), and photoluminescent (PL) spectrofluorometer were used to investigate the morphology, crystal structure, and up-conversion luminescent properties of all samples. In summary, all samples were granular-like nanoparticles and well crystallized with the same tetragonal phase as YVO4. Under the irradiation at 980 nm, YVO4:Yb3+,Er3+ phosphors can generate green emission at 525 and 553 nm and red emission at 657 nm, while YVO4:Yb3+,Tm3+ phosphors can generate blue emission at 476 nm, red emission at 648 nm, and near-infrared emission at 800 nm. Notably, YVO4:Yb3+,Er3+,Tm3+ samples can exhibit green emission, blue emission, red emission, and near-infrared emission at the same time, which might endow the as-prepared samples with potential applications in many fields, such as luminous paint, infrared detection, and biological label.  相似文献   

16.
Nanocrystal rods of Eu3+/Tb3+-co-doped ZrO2 were synthesized using a simple chemical precipitation technique. Both ions were successfully doped into the Zr4+ ion site in a mixed structure containing both monoclinic and tetragonal phases. The Eu3+ or Tb3+ singly doped zirconia produced red and green luminescence which are characteristics of Eu3+ and Tb3+ ions, respectively. The co-doped zirconia samples produced blue emission from defect states transitions in the host ZrO2, red and green luminescence from dopant ions giving cool to warm white light emissions. The phosphors were efficiently excited by ultraviolet and near-ultraviolet/blue radiations giving white and red light, respectively. The decay lifetime was found to increase with increasing donor ion concentration contrary to conventional observations reported by previous researchers. Weak quadrupole–quatdrupole multipolar process was responsible for energy transfer from Tb3+ (donor) ion to Eu3+ ion. No energy back-transfer from Eu3+ to Tb3+ ion was observed from the excitation spectra. Temperature-dependent photoluminescence shows the presence of defects at low temperature, but these defects vanished at room temperature and beyond. The Eu3+/Tb3+-co-doped ZrO2 nanocrystal rod is a potential phosphor for white light application using UV as an excitation source. Thermoluminescence measurements show that the inclusion of Tb3+ ion increases trap depths in the host zirconia.  相似文献   

17.
The use of carbon shells offers many advantages in surface coating or surface modification due to their surface with activated carboxyl and carbonyl groups. In this study, the Fe3O4@C@YVO4:Eu3+ composites were prepared through a simple sol–gel process. Reactive carbon interlayer was introduced as a key component, which separates lanthanide-based luminescent component from the magnetite, more importantly, it effectively prevent oxidation of the Fe3O4 core during the whole preparation process. The morphology, structure, magnetic, and luminescent properties of the composites were characterized by transmission electron microscopy (TEM), high-resolution TEM, X-ray diffraction, X-ray photoelectron spectra, VSM, and photoluminescent spectrophotometer. As a result, the Fe3O4@C/YVO4:Eu3+ composites with well-crystallized and core–shell structure were prepared and the YVO4:Eu3+ luminescent layer decorating the Fe3O4@C core–shell microspheres are about 10 nm. In addition, the Fe3O4@C@YVO4:Eu3+ composites have the excellent magnetic and luminescent properties, which allow them great potential for bioapplications such as magnetic bioseparation, magnetic resonance imaging, and drug/gene delivery.  相似文献   

18.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

19.
Rare earth elements (RE = Eu3+& Dy3+)and Bi3+ doped Y2O3 nanoparticles were synthesized by urea hydrolysis method in ethylene glycol, which acts as reaction medium as well as a capping agent, at a low temperature of 140 °C,followed by calcination of the obtained product. Transmission electron microscope (TEM) images reveals that ovoid shaped Y2O3 nanoparticles of around 22–24 nm size range were obtained in this method. The respective RE and Bi3+ doped Y2O3 precursor nanoparticles when heated at 600 and 750 °C, retains the same shape as that of the as-synthesized Y2O3 precursor samples. From EDAX spectra, the incorporation of RE ions into the host has been studied. XRD pattern reveals the crystalline nature of the heated nanoparticles and indicate the absence of any impurity phase other than cubic Y2O3.However, the as-synthesized nanoparticles were highly amorphous without the presence of any sharp XRD peaks. Photoluminescence study suggests that the synthesized samples could be used as red (Eu3+), yellow (Dy3+), blue and green (Bi3+)emitting phosphors.  相似文献   

20.
The effect of compensator on optical properties of Ca2Al2SiO7:Eu3+ is systematically investigated by the X-ray powder diffraction, photo-luminescence (PL) properties and lifetime. It is obviously observed that the PL intensity of Eu3+ under 394 nm excitation increases in the order of Ca1.86Eu0.14Al2SiO7 (CAS), Ca1.72Na0.14Eu0.14Al2SiO7 (CASNa) and Ca1.86Eu0.14Al2.14Si0.86O7 (CASAl), the intensity of Eu3+ are 100%, 134%, 184%, and the lifetime of Eu3+ are 0.75 ms, 1.28 ms and 1.39 ms, respectively. A charge compensation model is proposed to explain the changes in the emission intensity and lifetime of Eu3+ in Ca2Al2SiO7 with different compensation methods. PACS 78.55.-m; 61.72.Ji; 61.43.Gt; 42.70.-a; 74.62.Dh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号