首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nanostructured Au/AgxO/Ag sandwich multilayer films on quartz substrates are prepared by the magnetron sputtering method. The morphology, plasmon resonance and surface enhanced Raman scattering (SERS) activi- ties of the multilayer films are studied. The resonant absorption wavelength of localized surface plasmon is tuned in a wide range from 618nm to 993nm by controlling the density of nanoparticles of Au and Ag. The SERS activity of the Au/AgxO/Ag multilayer films are enhanced over -10 times compared with those of bare Ag and bare Au films. These properties may find a potential application in biosensor and bioimaging.  相似文献   

2.
The optical reflectance by a metallic plate arranged with array consisting of subwavelength periodic square hole is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD). There are dips in the reflectivity spectra, which indicate the absorption peaks. The absorption peaks behave differently according to the ratio of hole width and the period of the hole array. Combined with the near fields of the absorption peaks, it is found that the surface plasmon (SP) resonance on the surface of plate and localized SP in the hole play a major role for the two absorptions.  相似文献   

3.
We investigate the nanostructure, surface plasmon resonance (SPR) absorption and nonlinear enhancement of Au/Ag alloyed hollow nanoshells prepared by the replacement reaction of Ag nanoparticles in a HAuCI4 aqueous solution. As the volume of HAuCl4 increases from OmL to 0.S mL, the SPR band of the Au/Ag alloyed nanoshells is tuned from 430nm to 780nm, and the third-order nonlinear optical susceptibility is enhanced nearly by an order of magnitude, which indicates a large enhancement of local field in the Au/Ag alloyed hollow nanoshells with hole defects.  相似文献   

4.
As an employment of surface plasmonic effect, the consequence of insertion of a layer of Ag clusters into polymer solar cell on the enhancement of light absorption and power conversion efficiency is investigated. Optical analysis based on the finite-difference time-domain (FDTD) is performed with experiments to evaluate the effect of the interaction between the Ag clusters and incident light on light absorption in polymer solar cell. Ag clusters modify the light wave vector and the electromagnetic field inside the device is redistributed and enhanced. As a result, polymer solar cells achieve an overall increase in absorption, short-circuit current density, and power conversion efficiency.  相似文献   

5.
於黄忠  彭俊彪 《中国物理 B》2008,17(8):3143-3148
This paper studies the self-organization of the polymer in solar cells based on poly(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester by controlling the growth rate of active layer. These blend films are characterized by UV-vis absorption spectroscopy, charge-transport dark J - V curve, x-ray diffraction pattern curve, and atomic force microscopy. The results indicate that slowing down the drying process of the wet films leads to an enhanced selforganization, which causes an increased hole transport. Increased incident light absorption, higher carrier mobility, and balanced carrier transport in the active layer explain the enhancement in the device performance, the power conversion efficiency of 3.43% and fill factor up to 64.6% are achieved under Air Mass 1.5, 100 mW/cm^2.  相似文献   

6.
Yb~(3+)/Er~(3+)co-doped Na_5Lu_9F_(32) single crystals used as a spectral up-converter to improve the power conversion efficiency of perovskite solar cells are prepared via an improved Bridgman approach. Green and red up-conversion(UC) emissions under the excitation of near-infrared(NIR) bands of 900–1000 nm and1400–1600 nm can be observed. The effectiveness of the prepared materials as a spectral converter is verified by the enhancement of power conversion efficiency of perovskite solar cells. The sample with a UC layer is 15.5%more efficient in converting sunlight to electricity compared to the UC layer-free sample due to the absorption of sunlight in the NIR range. The results suggest the synthesized Yb~(3+)/Er~(3+)co-doped Na_5Lu_9F_(32) single crystals are suitable for enhancing the performance of perovskite solar cells.  相似文献   

7.
Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain(FDTD) simulation;finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm–800 nm, and the ultimate efficiency increases more than 22% compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances.  相似文献   

8.
We theoretically investigate surface plasmon resonance properties in Au and Ag cubic nanoparticles and find a novel plasmonic mode that exhibits simultaneous low extinction and high local field enhancement properties. We analyse this mode from different aspects by looking at the distribution patterns of local field intensity, energy flux, absorption and charge density. We find that in the mode the polarized charge is highly densified in a very limited volume around the corner of the nanocube and results in very strong local field enhancement. Perturbations of the incident energy flux and light absorption are also strongly localized in this small volume of the corner region, leading to both low absorption and low scattering cross section. As a result, the extinction is low for the mode. Metal nanoparticles involving such peculiar modes may be useful for constructing nonlinear compound materials with low linear absorption and high nonlinearity.  相似文献   

9.
黄茜  张晓丹  张鹤  熊绍珍  耿卫东  耿新华  赵颖 《中国物理 B》2010,19(4):47304-047304
A combined Ag nanoparticle with an insulating or conductive layer structure has been designed for molecular detection using surface enhanced Raman scattering microscopy. Optical absorption studies revealed localized surface plasmon resonance, which shows regular red shift with increasing environmental dielectric constant. With the combined structure of surface enhanced Raman scattering substrates and rhodamine 6G as a test molecule, the results in this paper show that the absorption has a linear relationship with the local electromagnetic field for insulating substrates, and the electrical property of the substrate has a non-negligible effect on the intensity of the local electromagnetic field and hence the Raman enhancement.  相似文献   

10.
Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of χ^(3)/α up to 0.56× 10-^10esu·cm is obtained, which is comparable to the best values reported in metal/oxlde composite films.  相似文献   

11.
三硼酸锂晶体上1064 nm,532 nm,355 nm三倍频增透膜的设计   总被引:1,自引:0,他引:1  
采用矢量法设计了三硼酸锂晶体上1064 nm、532 nm和355 nm三倍频增透膜,结果表明1064 nm、532 nm和355 nm波长的剩余反射率分别为0.0017%、0.0002%和0.0013%。根据误差分析,薄膜制备时沉积速率精度控制在 5.5%时,1064 nm、532 nm和355 nm波长的剩余反射率分别增加至0.20%、0.84%和1.89%。当材料折射率的变化控制在 3%时,1064 nm处的剩余反射率增大为0.20%,532 nm和355 nm处分别达0.88%和0.24%。与薄膜物理厚度相比,膜层折射率对剩余反射率的影响大。对膜系敏感层的分析表明,在1064 nm和355 nm波长,从入射介质向基底过渡的第二层膜的厚度变化对剩余反射率的影响最大,其次是第一膜层。在532 nm波长,第一和第三膜层是该膜系的敏感层。同时发现,由于薄膜材料的色散,1064 nm5、32 nm和355 nm波长的剩余反射率分别增加至0.15%、0.31%和1.52%。  相似文献   

12.
我们在实验中演示了520nm单频绿光泵浦的基于周期极化磷酸钛氧钾(PPKTP)晶体的780nm+1560nm双共振光参量振荡器,高效制备780nm+1 560nm连续可调谐双色下转换光场。该参量振荡器可输出93.3 mW的1 560nm单频激光和44.6mW的780nm单频激光。通过改变PPKTP晶体的温度所得到的波长粗调范围为:信号光1 529.81nm~1 573.83nm(~44nm),闲置光788.26nm~777.20nm(~11nm);通过连续调谐520nm泵浦激光频率初步得到的闲置光在780.24nm(铷原子D2线)处频率连续调谐范围约1.6GHz。  相似文献   

13.
 针对1 064, 532 和 680 nm波长激光, 以聚碳酸酯 (PC) 为镀膜基底, 钕玻璃激光中心波长为1 064 nm, 采用六分之一加三分之一膜系的反射膜系设计,以氧化锆为高折射率膜层材料,氯化酞菁铝掺杂的氧化硅为低折射率膜层材料,通过溶胶-凝胶法镀21层膜,并在多层反射膜与PC基底之间插入张力匹配层,实现了钕玻璃激光器1 064 nm主频和532 nm二倍频波长激光的反射,以及680 nm波长红宝石激光的同时吸收,1 064,532和680 nm波长处的透射率分别为1.67%,18.24%和2.4%。  相似文献   

14.
Wavelength tuning ranges and optimal concentrations are reported for 16 commercially available laser dyes pumped with the third harmonic of a Nd-YAG laser at 355 nm. The laser dye outputs cover the visible range from 410 to 715 nm.  相似文献   

15.
The transition frequencies of thei-component of the R(99)15-1 and thew-component of the R(85)26-0 transition in the B-X system of molecular127I2 have been determined with an overall relative standard uncertainty of 1.3 · 10?10. For this purpose a commercial linear dye laser has been modified and stabilized to the corresponding iodine line. This dye laser serves as a transportable frequency standard which is compared with the wavelength standards of the PTB. The evaluation of an experiment for testing special relativity at the test storage ring (TSR) in Heidelberg is based on the precision of the reported interferometric wavelength comparison.  相似文献   

16.
Dye laser output around 578 nm is utilized to pump sodium vapor confined in a heatpipe. Fixed wavelength ultraviolet emissions at 280 nm and 298 nm are observed for the first time and can be explained by anti-Stokes Raman scattering and two photon emission respectively. In addition, there are tunable emission lines around 280 nm and 298 nm, the frequencies of which vary with pump laser wavelength. These tunable lines can be explained by four-wave mixing schemes.  相似文献   

17.
A technique for assembling high-power laser diodes emitting at 808 and 980 nm was developed, which stably provides high radiation parameters when using one of the standard types of heat sinks for assembling high-power laser diodes, i.e., the C-mount. The maximum achievable power of laser diodes with a stripe contact width of 150 µm in the cw lasing mode was 25 W at a temperature of 20 °C.  相似文献   

18.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

19.
We report a single-mode, highly stable, continuous-wave Ho3+: ZBLAN fiber laser. The system was pumped by a 1175-nm fiber Raman laser and emitted at ~2950 nm. The optical-to-optical conversion efficiency was 43% that is the highest reported in the literature. Characterizations revealed a quasigaussian intensity profile with a power stability of less than 1%. This high stability relies on the single-wavelength emission of the system because the system does not require simultaneous oscillation at 2100 nm. Coincidence between the emission wavelength and the absorption peak of water makes the system suitable to replace a high-power (~9.34-W) Er3+: ZBLAN fiber laser for cutting materials with high moisture content.  相似文献   

20.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号