首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A neutron diffraction study of polycrystalline PrCu2Si2 [1], PrCu2Ge2 [2], PrFe2Ge2 [3] and NdFe2Ge2 [4] intermetallics carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic order below TN = 19 ± 1 K [1], TN = 16 ± 1 K [2], TN = 9 ± 1 K [3] and 13 ± 1 K [4]. Magnetic moment, parallel to the c-axis is localized on RE ions only. The magnetic structure of these compounds consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically with sequence +-+- for PrCu2Si2 and PrCu2Ge2 and +--+ for PrFe2Ge2 and NdFe2Ge2. The RE moments amount close to the free ion values for Fe containing compounds but are smaller in those containing Cu suggesting a fairly strong influence of crystal field.  相似文献   

2.
The crystal and magnetic stucture of TbMn2Ge2 are determined by neutron diffraction using a powder sample. The crystal structure of this compound is of the ThCr2Si2 type with small mixing of Mn and Ge atoms between 4(d) and 4(e) positions. At RT the antiferromagnetic collinear structure consist of a+?+? sequence of ferromagnetic layers of Mn atoms with the magnetic moment parallel to the c-axis. At 85 K, the ferromagnetic ordering within the Tb sublattice is observed. The magnetic moment (~7.7 μB) is parallel to the c-axis. At 4.2 K additional reflections are observed, which correspond to antiferromagnetic components in a monoclinic unit cell.  相似文献   

3.
The magnetic properties of the PrPd2Ge2 and NdPd2Ge2 compounds have been investigated by magnetic measurements, specific heat measurements and neutron diffraction experiments. The PrPd2Ge2 compound orders antiferromagnetically below TN=5.0(2) with an original modulated magnetic structure characterized by a magnetic cell three times larger than the chemical one by tripling of the c parameter. The palladium atom is non magnetic and the Pr moments are parallel to the c-axis with a value of ≈2.0 μB at 2 K. The specific heat measurements clearly detect a low temperature transition for the NdPd2Ge2 compound, interpreted as a Nd sublattice antiferromagnetic ordering below 1.3(2) K.  相似文献   

4.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

5.
The magnetic structure of the tetragonal ErCo2Si2 compound is determined by neutron diffraction on powder sample at 4.2 K. The magnetic ordering is connected with a symmetry lowering, magnetic space group P2s1 (Sh72)k = 000. The structure is collinear antiferromagnetic with the erbium magnetic moments making an angle of 56.2° with the c axis. The magnetic moment value for erbium is 6.75μB.  相似文献   

6.
The DyCu2Ge2 compound was studied by neutron diffraction on the Grenoble Nuclear Research Center multicounter system. The compound is isostructural to the rare earth RCu2Ge2 compounds with space group I4/mmm. 19 superlattice lines were observed in the 3 K pattern which are consistent with a doubling of the unit cell in the a and c directions. The moment value is 8 μB making an angle of 30° with a and 70° with c axis. The structure consists of ferromagnetic (1 0 1) layers with antiferromagnetic coupling between them. The Néel and Curie paramagnetic temperature of this compound is 8 K and ? 15 K respectively.  相似文献   

7.
TmCu2Ge2 compound crystallizes in the tetragonal ThCr2Si2-type crystal structure. The neutron diffraction reveals the presence of an incommensurate antiferromagnetic order below TN=2.5 K. The Tm magnetic moment of 5.0(1) μB at 0.47 K is parallel to the c-axis. The order is described by the propagation vector k=[kx, kx, 0], where kx=0.117(3). The increase of the values of the components kx near the Néel temperature is observed.  相似文献   

8.
We have carried out neutron diffraction on a HoCo2Si2 powder sample at 4.2 K. The magnetic structure of this compound is collinear antiferromagnetic with the holmium magnetic moments parallel to the c-axis of the crystal. The magnetic moment value of holmium is 9.85 μB. The magnetic space group is I4/mm'm' (Sh410128) k = 000 The ordering temperature is tn = 12(1) K.  相似文献   

9.
The compound ErCu2Ge2 was studied by neutron diffraction. The diffraction diagram of this compound at 170 K agrees with its crystallographic structure. Its diagram at 1.9 K reveals the existence of superlattice lines consistent with a cell doubled in the a and c directions. The erbium magnetic moment (8.0±0.4)μB lies on the c-axis. Crystal field calculations on the Er3+ site give 7.9μB, with easy magnetization axis the c-axis of the crystal. Copper must contribute to the Vml crystal field parameters with a charge equal to 0.6+.  相似文献   

10.
A neutron diffraction study of polycrystalline RECo2Si2 intermetallics (RE = Pr, Nd, Tb, Ho, Er) carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic ordering of +?+? type. Magnetic moment is localized on RE ions only and amounts to the RE3+ free ion value. In ErCo2Si2 the magnetic moment is normal to the tetragonal unique axis, whereas in the remaining compounds the magnetic moment is aligned along it. Néel points were determined from the temperature dependence of magnetic peak heights.  相似文献   

11.
于洪飞  张鲁山  吴小会  郭永权 《物理学报》2011,60(10):107306-107306
利用非自耗真空电弧熔炼法制备了NdNi2Ge2化合物样品,采用X射线粉末衍射技术和Rietveld全谱拟合分析方法测定了其晶体结构. 结果显示该化合物的空间群为I4/mmm,点阵参数为:a=4.120(1),c=9.835(0),Z=2,Nd原子占据2a晶位,Ni原子占据4d晶位,Ge原子占据4e晶位. NdNi2Ge2化合物呈现顺磁性,应用居里-外斯定律拟合计算得到居里-外斯常数为25.8,居里-外斯温度为6.24 K. 有效势磁矩为3.69μB,这与理论计算Nd3+的磁矩相符,表明磁矩主要源于Nd3+. 电阻率变化范围为0.3 Ω ·μm-1-1 Ω ·μm,电阻曲线拟合显示NdNi2Ge2呈半金属性. 关键词: 2Ge2')" href="#">NdNi2Ge2 Rietveld结构精修 电磁输运  相似文献   

12.
郭光华 《物理学报》2001,50(2):313-318
在10—800K的温度范围内用X射线衍射方法测量了DyMn2Ge2化合物的晶格常数与温度的变化关系,观察到高温时DyMn2Ge2由顺磁状态到反铁磁状态的自发磁相变伴随着晶格常数a的负的磁弹性异常现象.在4.2K—200K的温度范围内测量了DyMn2Ge2的交流磁化率.在交换相互作用的分子场模型近似下,从理论上分析讨论了DyMn2Ge2的低温自发磁相变和场诱导的磁相变.计算了DyMn2Ge2单晶的磁化强度与温度的变化关系以及不同温度下外磁场沿晶轴c方向时的磁化曲线.理论分析和计算结果表明,温度低于33K时在DyMn2Ge2中观察到的场诱导的一级磁相变为由亚铁磁状态(Fi)到中间态(IS)相变. 关键词: 稀土-过渡族金属间化合物 磁结构 磁相变  相似文献   

13.
Polycrystalline sample of ErFe2Ge2 was investigated by means of magnetic susceptibility, heat capacity and electrical resistivity measurements, as well as by powder neutron diffraction. All these experiments yielded an evidence of magnetic ordering setting at about 3 K. The low-temperature neutron data revealed the formation of a sine-modulated commensurate antiferromagnetic structure characterized by the propagation vector k=(0, 0, ). The erbium magnetic moment is aligned parallel to the crystallographic a-axis. At T=1.55 K it is equal to 7.06(5) μB.  相似文献   

14.
The magnetic structures of TbCu2Ge2 and HoCu2Ge2 were studied by neutron diffraction. At 293 K the chemical structure is tetragonal body centered, space group I 4/mmm. The magnetic cell at 4.2 K is four times larger than the chemical one with a wave vector k = 12 0 12. The magnetic space group is triclinic Pa1(Sh27) for both compounds. The moment values and directions are μTb = 8.48(6) [μB] along [110] tetr. and μHO = 6.5(1)[μB] making an angle of 81.4(°) with c and 80(°) with a1. The structure consists of ferromagnetic (101) layers stacked antiferromagnetically.  相似文献   

15.
Crystallographic and magnetic properties of PrMn2Si2, NdMn2Si2, YMn2Si2 and YMn2Ge2 intermetallics were studied by X-ray, neutron diffraction and magnetometric measurements. The crystal structure of all four compounds was confirmed to be body-centered tetragonal (space group I4/mmm). All were found to be antiferromagnetic with Néel points at 368, 380, 460 and 395 K respectively. Neutron diffraction results indicate that their magnetic structure consists of ferromagnetic layers composed of Mn ions piled up along the c-axis. Each layer is antiferromagnetically coupled to adjacent layer. The magnetic space group is Ip4/mmm′. No magnetic ordering of the R sublattice was observed at 1.8 K in the case of R = Pr and Nd.  相似文献   

16.
Observations were on a polycrystalline sample using unpolarised neutrons, at temperatures of 4.2 K and 100 K. There is 1 1 0 antiferromagnetic ordering. The magnetic moment is 7.2±0.4 μB, with its direction close to that of the c-axis.  相似文献   

17.
X-ray, magnetic susceptibility and 151Eu, 155Gd Mössbauer effect studies of EuM2Ge2 and GdM2Ge2 were performed. All compounds crystallize in the ThCr2Si2 body centered tetragonal structure. In all compounds, except those with M = Mn and in EuM2Ge2, the M component carries no magnetic moment. All compounds except those with Mn are antiferromagnetic at low temperatures. In EuMn2Ge2 the Mn moments order ferromagnetically at 330 K and change to antiferromagnetic order when the Eu moments order ferromagnetically (9 K). This behaviour is different from that in GdMn2Ge2, where the Mn sublattice orders antiferromagnetically at 365 K and becomes ferromagnetic and antiparallel to the ferromagnetic Gd sublattice at 96 K. The Mössbauer studies of 151Eu and 151Gd provide values for the magnetic hyperfine fields, the quadrupole interactions and the orientation of the magnetic moments relative to the local fourfold axis (c-axis). It turns out that in the Eu compounds the easy axis of magnetization is close to the c-axis, while in the Gd compounds it is in the basal plane. In all systems, excluding those with Mn, the interatomic rare earth-rare earth distances have the dominant effect on the conduction electron charge density and polarization at the rare earth site and on the Curie point.  相似文献   

18.
Neutron diffraction studies of polycrystalline PrCo2Si2 and TbCo2Si2 compounds were carried out at 4.2 and 293 K. Both samples have collinear antiferromagnetic order below TN(31(1) and 46(1) K for Pr and Tb compound respectively), with their magnetic moments parallel to the c axis. The ordered magnetic moment values of Pr and Tb at 4.2 K (3.19 and 9.12 μB respectively), are close to the saturation value of the free ions. The corresponding magnetic space group Pl4/mnc (Sh410128) is body-anticentered (k = 111222 refering to Pl cell).  相似文献   

19.
Polycrystalline samples of ternary rare-earth germanides R2Co3Ge5 (R=La, Ce and Pr) have been prepared and investigated by means of magnetic susceptibility, isothermal magnetization, electrical resistivity and specific heat measurements. All these compounds crystallize in orthorhombic U2Co3Si5 structure (space group Ibam). No evidence of magnetic or superconducting transition is observed in any of these compounds down to 2 K. The unit cell volume of Ce2Co3Ge5 deviates from the expected lanthanide contraction, indicating non trivalent state of Ce ions in this compound. The reduced value of effective moment (μeff≈0.95 μB) compared to that expected for trivalent Ce ions further supports valence-fluctuating nature of Ce in Ce2Co3Ge5. The observed temperature dependence of magnetic susceptibility is consistent with the ionic interconfiguration fluctuation (ICF) model. Although no sharp anomaly due to a phase transition is seen, a broad Schottky-type anomaly is observed in the magnetic part of specific heat of Pr2Co3Ge5. An analysis of Cmag data suggests a singlet ground state in Pr2Co3Ge5 separated from the singlet first excited state by 22 K and a doublet second excited state at 73 K.  相似文献   

20.
The Er5Ge3 compound (Mn5Si3-type, hP16, P63/mcm) at 4 K shows magnetic ordering of the antiferromagnetic type. Its magnetic structure consists of sine modulated collinear magnetic moments of Er that are parallel to the c axis (with a propagation vector k=[0 0 ±0.3]). This corresponds to the magnetic unit cell (a a 10c), the values of the magnetic moment of the Er atoms being, as a general formula, MzM0 cos [2π(Z–1/4)(1–kZ)], with M0=9.2(2) μB at 4 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号