首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic dynamics of charge ordered Nd0.8Na0.2MnO3 compound was studied by measuring the temperature variation of magnetization for different magnetic fields up to 7 T and, the field variation of magnetization at different temperatures down to 5 K. This sample exhibits a charge-ordering transition at 180 K, followed by a weak ferromagnetic (FM) transition at around 100 K and a spin glass like transition below 40 K. Suppression of charge-ordering and spin glass like transition and increase in FM TC were observed with an increase in magnetic field. A reversible metamagnetic transition above a threshold field (Hf) of 4.5 T was observed at 130 K, followed by a saturation magnetization of 3.2 μB/f.u. However at 5 K, an irreversible field induced first order phase transition from charge ordered state to FM state was observed at Hf=5 T. For comparison, the temperature and field variations of magnetization were studied on a FM compound from the same series with the composition Nd0.90Na0.10MnO3. A clear FM transition with a TC of 113 K and a saturation magnetization of 4.3 μB/f.u was observed.  相似文献   

2.
Magnetization behavior of (La0.83Bi0.17)0.67Ca0.33MnO3 has been investigated in the temperature range from 100 to 180 K. A metamagnetic transition was observed in the temperature region, where the magnetization was measured after a zero-field-cooling from room temperature to a selected temperature. Experimental results show that, after a higher magnetization route, the field-increasing branches of the magnetization curves shows an unusual training effect: below a magnetic field H0, the applied magnetic field enhances the value of magnetization; however, above H0 the magnetic field suppresses the value, and the behavior cannot be totally attributed to the enhancement effect of the applied magnetic field on ferromagnetic phase fraction. It is proposed that, in the two-phase coexistence region, the higher magnetic field promotes the phase separation and leads to both the fraction of ferromagnetic domain and the stabilization of antiferromagnetic domain increase.  相似文献   

3.
We report the magnetic and electrical transport properties of manganite Pr0.6Na0.4MnO3. At the temperature of 2 K, a field-induced steplike magnetization and resistivity transition are observed. The step transitions of magnetization and resistivity are shifted to higher fields as a result of field cooling, and transformed to a smooth broad one when the cooling field is higher than 20 kOe. Moreover, in a magnetic field slightly below the critical field, the magnetic and resistive relaxation exhibits a spontaneous step after a long incubation time when both the temperature and magnetic field are constant. Such steplike transitions are discussed in terms of a martensiticlike transformation associated with phase separation.  相似文献   

4.
Fe2O3 hematite (alpha) nanoparticles suspended in the liquid phase of the liquid crystal 4,4-azoxyanlsole (PAA) are cooled below the freezing temperature (397 K) in a 4000 G dc magnetic field. The in field solidification locks the direction of maximum magnetization of the particles parallel to the direction of the applied dc magnetic field removing the effects of dynamical fluctuations of the nanoparticles on the magnetic properties allowing a study of the intrinsic magnetic properties of the nanoparticles as well as the anisotropic behavior of the ferromagnetic resonance (FMR) signal. Freezing in PAA allows temperature-dependent measurements to be made at much higher temperature than previous measurements. The field position, line width and intensity of the FMR signal as a function of temperature as well as the magnetization show anomalies in the vicinity of 200 K indicative of a magnetic transition, likely the previously observed Morin transition shifted to lower temperature due to the small particle size. Weak ferromagnetism is observed below Tc in contrast to the bulk material where it is antiferromagnetic below Tc. The Raman spectrum above and below 200 K shows no evidence of a change in lattice symmetry associated with the magnetic transition.  相似文献   

5.
In this work the Mn5Si3 and Mn5SiB2 phases were produced via arc melting and heat treatment at 1000 °C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn5Si3 and near single-phase Mn5SiB2 microstructures. The magnetic behavior of the Mn5Si3 phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn5SiB2 phase shows a ferromagnetic behavior presenting a saturation magnetization Ms of about 5.35×105 A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments.  相似文献   

6.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

7.
In order to study the mechanism behind the phase separation scenario in the Sm0.15Ca0.85MnO3 compound, magnetization and resistivity measurements have been carried out in pulsed magnetic fields up to 50 T at temperatures 4.2 K<T<200 K. It is found that external magnetic field causes a collapse of a C-type AFM (P21/m) phase resulting in field-induced insulator-metal transition, which is irreversible below T1=75 K. In zero field the content of a G-type phase in the mixed C-G state can vary from 10 to 17% at T=10 K. A set of metastable states with different volume ratios of G-type to C-type phases is observed below T1 depending on the history of the sample. The obtained results indicate that the phase separation plays a dominant role for the electric and the magnetic properties of this material.  相似文献   

8.
The single crystal of the new ternary compound Sm12Fe14Al5 was grown and its crystallographic and magnetic properties were investigated. Sm12Fe14Al5 has a hexagonal structure of the space group p-3m1 and shows ferromagnetism with a Curie temperature of 245 K. The easy direction of magnetization is parallel to the c-axis at temperatures between 245 and 85 K; however, it changes to the c-plane below 85 K through a first-order-like phase transition. No saturation is observed in the magnetization curve even under the applied field of 55 kOe at 5 K. Sm12Fe14Al5 seems to have a large coercive field at very low temperatures. The anisotropy field was estimated at 5 and 120 K and the saturation magnetization of low temperature phase is explained assuming a ferromagnetic coupling between Fe and Sm sublattices.  相似文献   

9.
The La0.67Sr0.33MnO3 composition prepared by sol-gel synthesis was studied by dc magnetization measurements. A large magnetocaloric effect was inferred over a wide range of temperature around the second-order paramagnetic-ferromagnetic transition. The change of magnetic entropy increases monotonically with increasing magnetic field and reaches the value of 5.15 J/kg K at 370 K for Δμ0H=5 T. The corresponding adiabatic temperature change is 3.3 K. The changes in magnetic entropy and the adiabatic temperature are also significant at moderate magnetic fields. The magnetic field induced change of the specific heat varies with temperature and has maximum variation near the paramagnetic-ferromagnetic transition. The obtained results show that La0.67Sr0.33MnO3 could be considered as a potential candidate for magnetic refrigeration applications above room temperature.  相似文献   

10.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

11.
We have studied the magnetocaloric effect (MCE) in a bilayered La4/3Sr5/3Mn2O7 single crystal with applied field along both ab-plane and c-direction. Due to the quasi-two-dimensional structure, the crystal exhibits a strong anisotropy in the MCE. The difference of magnetic entropy change between two crystallographic directions depends on external magnetic fields and has a maximum of 2 J/kg K. A large low-field magnetic entropy change, reaching 3.2 J/kg K for a magnetic field change of 15 kOe, is observed when the applied field is along ab-plane. This large low-field magnetic entropy change is attributed to the rapid change of magnetization in response to external magnetic fields in the easy magnetizing plane.  相似文献   

12.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

13.
Magnetic properties and magnetic entropy change ΔS were investigated in Heusler alloy Ni43Mn43Co3Sn11. With decreasing temperature this alloy undergoes a martensitic structural transition at TM=188 K. The incorporation of Co atoms enhances ferromagnetic exchange for parent phases. Austenitic phase with cubic structure shows strong ferromagnetic behaviors with Curie temperature TCA at 346 K, while martensitic phase shows weak ferromagnetic properties. An external magnetic field can shift TM to a lower temperature at a rate of 4.4 K/T, and a field-induced structural transition from martensitic to austenitic state takes place at temperatures near but below TM. As a result, a great magnetic entropy change with positive sign appears. The size of ΔS reaches 33 J/kg K under 5 T magnetic field. More important is that the ΔS displays a table-like peak under 5 T, which is favorable for Ericsson-type refrigerators.  相似文献   

14.
Single-phase polycrystalline samples of La0.7Sr0.3Mn1-xCrxO3 with nominal composition of x=0.00, 0.20, 0.40 and 0.50 were prepared by a conventional solid-state reaction method in air. Investigations of magnetization were carried out in the temperature range 5-400 K and magnetic field range 0-8 T. It was found that the Curie temperature TC decreases with increasing x and the maximum magnetic entropy change (−ΔSM) for x=0.20 is ∼1.203 and ∼2.653 J/kg K, respectively for 2 and 6 T magnetic field near the temperature of 280 K.  相似文献   

15.
Ferromagnetic shape memory alloy with nominal composition Co37Ni34Al29 is investigated by transport and magnetic measurements. The anomaly due to the martensitic transition is observed around 130-210 K. The thermal hysteresis, observed due to martensitic transition in the dc magnetization versus temperature data, gets suppressed at higher applied field. Below 50 K, magnetization varies with temperature perfectly as T3/2, which signifies that spin wave excitations are largely responsible for thermal demagnetization. The sample shows small negative magneto-resistance, which varies non-monotonically with temperature showing largest value at around 200 K.  相似文献   

16.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

17.
Effect of a 10 T high magnetic field on the morphology and magnetic properties of the MnBi compounds during the Mn1.08Bi-MnBi phase transformation has been investigated. Results indicate that the field has split the MnBi crystal along the (0 0 1)-crystal plane during the Mn1.08Bi-MnBi phase transformation process and the split MnBi crystals align and aggregate along the magnetic field direction. Along with the change of the MnBi phase morphology, the magnetic property changes greatly. Indeed, with the alignment and aggregation of the spit MnBi phases, the saturation magnetization Ms and the magnetic susceptibility χ increase, and the coercive field Hc and the remnant magnetization Mr decrease. This implies that a high magnetic field may have caused the magnetic property of the MnBi phase to transform towards soft magnetism. Above results may be attributed to the enhancement of the magnetization and the Mn1.08Bi-MnBi phase transformation in a high magnetic field.  相似文献   

18.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

19.
Magnetization and specific heat of Nd0.7Pb0.3MnO3 single crystal are studied at applied magnetic field. Magnetization measurement at 0.3 T shows ferromagnetic phase below 150 K (TC) and below 20 K displays an antiferromagnetic component. The latter appears to be destroyed at 4.8 T. This anomalous increase below 50 K is probably due to reorientation of Nd moments at high magnetic field. Heat capacity has been measured at 0-10 T at low temperature. The data have been fitted to contributions from free electrons (γ), ferromagnetic spin excitations (β3/2), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. Fitting yields that β3/2 term is very small at 6 and 10 T because of introducing paramagnetic component in ferromagnetic phase at applied magnetic field. Peak due to Schottky anomaly is observed to be broadened with application of magnetic field and the magnitude of Schottky gap(ΔSch) also increases accordingly.  相似文献   

20.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号