首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Magnetic properties of glucose coated cuprous oxide nanoparticles of different sizes have been studied. Unlike bulk Cu2O, which shows diamagnetic behavior, the nanoparticles show superparamagnetic behavior. A superparamagnetic blocking temperature of 21 K is observed for 5 nm particles. A magnetic hysteresis loop with a coercivity of 406 Oe is observed for these particles at 5 K. The magnetization and the coercivity increase with decreasing particle size. The superparamagnetic behavior, along with the increase in magnetization and coercivity with decreasing particle size, is due to the enhanced surface contributions to the magnetism.  相似文献   

2.
The superparamagnetism of an ensemble of ?-Fe2O3 nanoparticles with a mean size of 3.9 nm dispersed in a xerogel SiO2 matrix is studied by the Mössbauer spectroscopy method. It is shown that most nanoparticles at room temperature are in the superparamagnetic (unblocked) state. As the temperature decreases, the progressive blocking of the magnetic moments of the particles occurs, which is manifested in the Mössbauer spectra as the transformation of the quadrupole doublet into a Zeeman sextet. The analysis of the relative intensity of the superparamagnetic (quadrupole doublet) and magnetically split (sextets) spectral components in the range of 4–300 K provides the particle size distribution, which is in agreement with the transmission electron microscopy data. The values of the effective magnetic anisotropy constants (Keff) are determined, and the contribution of surface anisotropy (KS) is estimated for particles of various sizes. It is shown that the quantity Keff is inversely proportional to the particle size, which indicates the significant contribution of the surface to the magnetic state of the ?-Fe2O3 nanoparticles with the size of several nanometers.  相似文献   

3.
The controllable synthesis of relatively large nickel nanoparticles via thermal decomposition of nickel acetate tetrahydrate in oleylamine in the presence of 1-adamantane carboxylic acid (ACA) and trioctylphosphine oxide (TOPO) is reported. High crystalline hcp nanoparticles of different sizes have been prepared at 290 °C, whereas at relative lower temperatures fcc are favored. The particle size was varying between 50 and 150 nm by properly adjusting the proportion of the capping ligands. TOPO-to-ACA ratio was also found to have an influence on the magnetic properties through the potential formation of a NiO shell. Pure hcp Ni nanoparticles over 50 nm in size served as models to illuminate the magnetic behavior of this metastable hexagonal Ni phase. Contrary to the net ferromagnetic characteristics of fcc Ni nanoparticles in the same size range, hexagonal structured particles exhibit superparamagnetic behavior at room temperature and a weak ferromagnetic contribution below 15 K.  相似文献   

4.
The ultrafast magnetization and electron dynamics of superparamagnetic cobalt nanoparticles, embedded in a dielectric matrix, have been investigated using femtosecond optical pulses. Our experimental approach allows us to bypass the superparamagnetic thermal fluctuations and to observe the trajectory of the magnetization vector which exhibits a strongly damped precession motion. The magnetization precession is damped faster in the superparamagnetic particles than in cobalt films or when the particle size decreases, suggesting that the damping is enhanced at the metal dielectric interface. Our observations question the gyroscopic nature of the magnetization pathway when superparamagnetic fluctuations take place as we discuss in the context of Brown's model.  相似文献   

5.
Mg-doped Ni nanoparticles with the hexagonal close-packed (hcp) and face-centered cubic (fcc) structure have been synthesized by sol-gel method sintered at different temperatures in argon atmosphere. The sintering temperature played an important role in the control of the crystalline phase and the particle size. The pure hcp Mg-doped Ni nanoparticles with average particle size of 6.0 nm were obtained at 320 °C. The results indicated that the transition from the hcp to the fcc phase occurred in the temperature range between 320 °C and 450 °C. Moreover, the VSM results showed that the hcp Mg-doped Ni nanoparticles had unique ferromagnetic and superparamagnetic behavior. The unsaturation even at 5000 Oe is one of the superparamagnetic characteristics due to the small particle size. From the ZFC and FC curves, the blocking temperature TB of the hcp sample (6.0 nm) was estimated to be 10 K. The blocking temperature was related to the size of the magnetic particles and the magnetocrystalline anisotropy constant. By theoretical calculation, the deduced particle size was 6.59 nm for hcp Mg-doped Ni nanoparticles which was in agreement with the results of XRD and TEM.  相似文献   

6.
Heating rates generated by superparamagnetic particles deteriorate quickly with particle polydispersity. We prepared highly uniform, monodisperse, single-crystal magnetite nanoparticles of tailorable size via organometallic decomposition. As-synthesized nanocrystals were coated with phospholipids to form biocompatible magnetoliposomes. Modeling of AC-magnetic field parameters indicates that 11 nm nanocrystals have maximum heating rates within the biologically safe frequency range.  相似文献   

7.
Using the thermal decomposition of organometallics method we have synthesized high-quality, iron oxide nanoparticles of tailorable size up to ∼15 nm and transferred them to a water phase by coating with a biocompatible polymer. The magnetic behavior of these particles was measured and fit to a log-normal distribution using the Chantrell method and their polydispersity was confirmed to be very narrow. By performing calorimetry measurements with these monodisperse particles we have unambiguously demonstrated, for the first time, that at a given frequency, heating rates of superparamagnetic particles are dependent on particle size, in agreement with earlier theoretical predictions.  相似文献   

8.
Superparamagnetic nanoparticles have been widely applied in various bio-medical applications. To date, it is still a challenge to synthesize nanosized Fe3O4 particles with controlled size and distribution. In this paper, a novel solvent-free thermal decomposition method is reported for synthesizing Fe3O4 nanoparticles. Size and morphology of the nanoparticles are determined by TEM while the structure of the nanoparticles is identified by FTIR, XPS and TGA measurements. Magnetic properties of the obtained particles are determined using VSM and SQUID measurement. The particle size of the Fe3O4 can be tailored by adjusting either reaction temperature or time. When the reaction temperature is increased to 330 °C and the reaction time is extended to 4 h, the average particle size of the obtained nanoparticles is ∼9 nm, while Ms value reaches ∼76 emu/g. The as synthesized Fe3O4 nanoparticles show well-established superparamagnetic properties with the blocking temperature at around 100 K.  相似文献   

9.
李文宇  霍格  黄岩  董丽娟  卢学刚 《物理学报》2018,67(17):177501-177501
采用水热控制合成法,以六水三氯化铁、柠檬酸三钠和尿素为原料,聚丙烯酰胺为稳定剂, 200?C下反应12 h制备得到了超顺磁性空心Fe_3O_4纳米微球.通过X射线衍射仪、扫描电子显微镜、透射电子显微镜对样品的结构和形貌进行表征,并采用振动样品磁强计测试了样品的磁性能.结果表明:所得样品为具有尖晶石结构的Fe_3O_4纳米微球,尺寸为160 nm左右,呈分等级结构,即整个微球由粒径约18 nm的初级晶粒自组装堆叠而成;室温下表现为典型的超顺磁性,且饱和磁化强度为73.3 emu/g (1 emu/g=1 A·m~2/kg),这种高饱和磁化强度可以由其初级晶粒晶化程度高且粒径较大以及这种特殊的二次自组装结构进行解释.这种Fe_3O_4纳米微球为疏松多孔的空心球状结构,具有粒径分布均匀、分散性良好和超顺磁性的特点,在药物靶向输运和肿瘤热疗中有潜在的应用.  相似文献   

10.
Permeability and its upper limitation frequency of superparamagnetic nanoparticle type magneto-dielectric hybrid material were theoretically and experimentally investigated. The Landau-Lifschitz-Gilbert equation without any interaction between nanoparticles revealed that the blocking resonance frequency was able to exceed the ferromagnetic resonance frequency originating from the intrinsic magnetocrystalline anisotropy field by decreasing particle size, resulting in ultra fast switching of superparamagnetic moment in GHz range. In the case of Fe nanoparticles, the blocking resonance frequency can be increased to 130 GHz by reducing particle size to 1 nm. The experiment results for Fe3O4 and Fe nanoparticle assemblies supported the validity of our calculation results. Thus, superparamagnetic nanoparticle assembly could be promising material for high frequency use over 10 GHz range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号