首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider holographic dark energy model with interaction in the flat space-time with non-zero cosmological constant. We calculate cosmic scale factor and Hubble expansion parameter by using the time-dependent dark energy density. Then, we obtain phenomenological interaction between holographic dark energy and matter. We fixed our solution by using the observational data.  相似文献   

2.
In this study, we have investigated the dynamics of non-static Gödel type rotating universe with massive scalar field, viscous fluid and heat flow in the presence of cosmological constant. For various cosmic matter forms, the behavior of the cosmological constant (Λ), shear (η) and bulk (ξ) viscosity coefficients and other kinematic quantities have studied in the early universe. We have showed the decay of massive scalar field in the non-static rotating Gödel type universe and we have obtained constant scalar field with and without source density. Also, we have investigated the effects of massive scalar field on the matter density and pressure. From solutions of the field equations, we have a cosmological model with non-zero expansion, shear, heat flux and rotation. Also some physical and geometrical aspects of the model discussed.  相似文献   

3.
We analyse the quantum propagation of interacting particles in cosmological backgrounds. The model we use consists of a doublet of massive scalar fields propagating in an expanding universe filled with massless radiation. The masses are much larger than the Hubble expansion rate, so that the number of massive particles is preserved and the fields adequately described within the adiabatic approximation. We focus on the dissipative effects related to the expansion rate by computing the imaginary part of the self-energy. In the quasi static approximation, we recover the expected result that instantaneous decay rate is governed by the local temperature. We then analyse the long time behavior of the propagator to unravel the secular effects induced by the self-energy. We show that these effects can be expressed in terms of integrals of local quantities. Applications to the trans-Planckian question are briefly discussed.  相似文献   

4.
This Letter is a study of the effects of higher dimensional gravity and Brans–Dicke (BD) scalar field on cosmic acceleration in 5-D BD cosmological model. We assume a flat cosmological model in which the matter content of the universe is either cold dark matter or radiation. In a framework to study attractor solutions in the phase space we simultaneously constrain the model parameters with the observational data for distance modulus. The phase space analysis illustrates that the universe begins from an unstable state in the past and eventually reaches an asymptotically stable state (attractor). We examine the model by performing Hubble parameter test in addition to statefinder diagnosis. We also reconstruct the equation of state parameter, the scale factor in 3-D space and along extra dimension. The results show that due to the presence of extra dimension and Brans–Dicke scalar field in the model, the universe undergoes a period of acceleration.  相似文献   

5.
Quantum fluctuations of a real massless scalar field are studied in the context of the generalized uncertainty principle (GUP). The dynamical finite vacuum energy is found in spatially flat Friedmann–Robertson–Walker spacetime which can be identified as dark energy to explain late time cosmic speed-up. The results show that a tiny deviation from the standard uncertainty principle is necessary on cosmological ground. By using the observational data we have constraint the GUP parameter even more stronger than ever.  相似文献   

6.
We consider toy cosmological models in which a classical, homogeneous, spinor field provides a dominant or sub-dominant contribution to the energy-momentum tensor of a flat Friedmann-Robertson-Walker universe. We find that, if such a field were to exist, appropriate choices of the spinor self-interaction would generate a rich variety of behaviors, quite different from their widely studied scalar field counterparts. We first discuss solutions that incorporate a stage of cosmic inflation and estimate the primordial spectrum of density perturbations seeded during such a stage. Inflation driven by a spinor field turns out to be unappealing as it leads to a blue spectrum of perturbations and requires considerable fine-tuning of parameters. We next find that, for simple, quartic spinor self-interactions, non-singular cyclic cosmologies exist with reasonable parameter choices. These solutions might eventually be incorporated into a successful past- and future-eternal cosmological model free of singularities. In an Appendix, we discuss the classical treatment of spinors and argue that certain quantum systems might be approximated in terms of such fields.  相似文献   

7.
In this work we investigate the polytropic gas dark energy model in the non flat universe. We first calculate the evolution of EoS parameter of the model as well as the cosmological evolution of Hubble parameter in the context of polytropic gas dark energy model. Then we reconstruct the dynamics and the potential of the tachyon and K-essence scalar field models according to the evolutionary behavior of polytropic gas model.  相似文献   

8.
An alternative inflationary model is proposed predicated upon a considerationof the form of the uncertainty principle in a curved background spacetime. Anargument is presented suggesting a possible curvature dependence in the correctcommutator relations for a quantum field in a classical background which cannotbe deduced simply by extrapolation from the flat spacetime theory. To assess thepossible consequences of this dependence, we apply the idea to a scalar field ina closed Friedmann-Robertson-Walker background, using a simple model forthe curvature dependence (along the way, a previous erroneous result obtainedby Bunch for the adiabatically expanded wave function is corrected). The resultis a time-dependent cosmological constant, producing a vast amount of inflationthat is independent of either the mass of the matter field or its effectivepotential.Furthermore, it is seen that the field modes are initially zero for allwavelengthsand come into being as the universe evolves. In this sense, the universe createsits contents out of its own expansion. At the end of the process, the matterfieldis far from equilibrium and essentially reproduces the initial conditions forthe New Inflationary Model.  相似文献   

9.
Taking the cosmological expansion rate directly as a function of field φ, H=H(φ), we present a new exact solution to Einstein's equations that describe the evolution of cosmological chaotic inflation model. The inflation is driven by the evolution of scalar field with inflation potential V(φ)=(λ/8)(φ22)2. The spectral indices of the scalar density ns and gravitational wave fluctuations ng are computed. The value of ns lies well inside the limits set by the cosmic background explorer satellite.  相似文献   

10.
Solutions are presented for a scalar field coupled conformally to Einstein gravity with a nonvanishing cosmological constant, in the case that the spacetime metric is spatially homogeneous and isotropic. Since the cosmological constant destroys the conformal invariance of the action, these solutions cannot be obtained by solving the flat space wave equation for the scalar field. It turns out that the metric is determined entirely by the cosmological constant, while the scalar field acquires an apparent mass squared which is proportional to the cosmological constant. It is conjectured that the cosmological constant in the universe at present may thus be disguised as the mass of some scalar field.  相似文献   

11.
In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.  相似文献   

12.
This paper determines the existence of Noether symmetry in non-minimally coupled f(RT) gravity admitting minimal coupling with scalar field models. We consider a generalized spacetime which corresponds to different anisotropic and homogeneous universe models. We formulate symmetry generators along with conserved quantities through Noether symmetry technique for direct and indirect curvature–matter coupling. For dust and perfect fluids, we evaluate exact solutions and construct their cosmological analysis through some cosmological parameters. We conclude that decelerated expansion is obtained for the quintessence model with a dust distribution, while a perfect fluid with dominating potential energy over kinetic energy leads to the current cosmic expansion for both phantom as well as quintessence models.  相似文献   

13.
We study a nonminimal derivative coupling (NMDC) of scalar field, where the scalar field is coupled to curvature tensor in the five dimensional universal extra dimension model. We apply the Einstein equation and find its solution. First, we consider a special case of pure free scalar field without NMDC and we find that for static extradimension, the solution is equivalent to the standard cosmology with stiff matter. For a general case of pure free scalar field with NMDC, we find that the de Sitter solution is the solution of our model. For this solution, the scalar field evolves linearly in time. In the limit of small Hubble parameter, the general case give us the same solution as in the pure free scalar field. Finally, we perform a dynamical analysis to determine the stability of our model. We find that the extradimension, if it exist, can not be static and always shrinks with the expansion of four dimensional spacetime.  相似文献   

14.
We consider the structure of the cosmological singularity in Veneziano’s inflationary model. The problem of choosing initial data in the model is shown to be unsolved—the spacetime in the asymptotically flat limit can be filled with an arbitrary number of gravitational and scalar field quanta. As a result, the universe acquires a domain structure near the singularity, with an anisotropic expansion of its own realized in each domain.  相似文献   

15.
We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ=Γ0 (where Γ0 is a constant) in “intermediate” inflation and Γ=V(φ), (where V(φ) is the potential of tachyonic field) in “logamediate” inflation. We have assumed slow-roll condition to construct scalar field φ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained. We have analyzed the stability of this model through graphical representations.  相似文献   

16.
王灿灿 《物理学报》2018,67(17):179501-179501
量子纠缠作为量子信息理论中最核心的部分,代表量子态一种内在的特性,是微观物质的一种根本的性质,它是以非定域的形式存在于多子量子系统中的一种神奇的物理现象.熵也是量子信息理论的重要概念之一,纠缠熵作为量子信息的一个测度已经成为一种重要的理论工具,为物理学中的各类课题提供了新的研究方法.本文主要考虑量子纠缠的宇宙学应用,试图更好地从纠缠的角度来理解宇宙动力学.本文研究了量子信息理论的概念和宇宙学之间的深层联系,利用费米正则坐标和共形费米坐标构建了弗里德曼- 勒梅特-罗伯逊-沃尔克宇宙学弗里德曼方程和纠缠之间的联系.假设小测地球(a geodesic ball)的纠缠熵在给定体积下是最大的,可以从量子纠缠第一定律推导出弗里德曼方程.研究表明引力与量子纠缠之间存在着某种深刻的联系,这种联系对引力场方程的解是成立的.  相似文献   

17.
Cosmic acceleration can be achieved not only with a sufficiently flat scalar field potential but through kinetic terms coupled to gravity. These derivative couplings impose a shift symmetry on the scalar field, aiding naturalness. We write the most general purely kinetic action not exceeding mass dimension 6 and obeying second order field equations. The result reduces to a simple form involving a coupling of the Einstein tensor with the kinetic term and can be interpreted as adding a new term to Galileon gravity in curved spacetime. We examine the cosmological implications of the effective dark energy and classify the dynamical attractor solutions, finding a quasistable loitering phase mimicking late time acceleration by a cosmological constant.  相似文献   

18.
We present an isotropic and homogeneous flat cosmological model for bulk viscous fluid distribution. We consider the vacuum density proportional to Hubble expansion parameter and time dependent bulk viscosity related to the velocity and acceleration of universe. The behaviour of resulting solutions are in accordance with recent astronomical observations. The model obtained evolves with a decelerating expansion followed by late time acceleration. Cosmological term Λ being very large at initial epoch relaxes to a genuine cosmological constant asymptotically. Presence of bulk viscosity prevents the matter density to vanish asymptotically and the matter density continues to be of the order of vacuum density after a finite time. Thus, we obtain a universe having the possibility of cosmic coincidence.  相似文献   

19.
A. Tawfik 《Annalen der Physik》2011,523(5):423-434
The evolution of a flat, isotropic and homogeneous universe is studied. The background geometry in the early phases of the universe is conjectured to be filled with causal bulk viscous fluid and dark energy. The energy density relations obtained from the assumption of covariant conservation of energy‐momentum tensor of the background matter in the early universe are used to derive the basic equation for the Hubble parameter H. The viscous properties described by ultra‐relativistic equations of state and bulk viscosity taken from recent heavy‐ion collisions and lattice QCD calculations have been utilized to give an approximate solution of the field equations. The cosmological constant is conjectured to be related to the energy density of the vacuum. In this treatment, there is a clear evidence for singularity at vanishing cosmic time t indicating the dominant contribution from the dark energy. The time evolution of H seems to last for much longer time than the ideal case, where both cosmological constant and viscosity coefficient are entirely vanishing.  相似文献   

20.
Braneworld models may yield interesting effects ranging from high-energy physics to cosmology, or even some low-energy physics. Their mode structure modifies standard results in these physical realms that can be tested and used, for example, to set bounds on the models parameters. Now, to define braneworld deviations from standard 4D physics, a notion of matter and gravity localization on the brane is crucial. In this work we investigate the localization of universal massive scalar fields in a de Sitter thick tachyonic braneworld generated by gravity coupled to a tachyonic bulk scalar field. This braneworld possesses a 4D de Sitter induced metric and is asymptotically flat despite the presence of a negative bulk cosmological constant, a novel and interesting peculiarity that contrasts with previously known models. It turns out that universal scalar fields can be localized in this expanding braneworld if their bulk mass obeys an upper bound, otherwise the scalar fields delocalize: The dynamics of the scalar field is governed by a Schrödinger equation with an analog quantum mechanical potential of modified Pöschl–Teller type. This potential depends on the bulk curvature of the braneworld system as well as on the value of the bulk scalar field mass. For masses satisfying a certain upper bound, the potential displays a negative minimum and possesses a single massless bound state separated from the Kaluza–Klein (KK) massive modes by a mass gap defined by the Hubble (expansion scale) parameter of the 3-brane. As the bulk scalar field mass increases, the minimum of the quantum mechanical potential approaches a null value and, when the bulk mass reaches certain upper bound, it becomes positive (eventually transforming into a potential barrier), leading to delocalization of the bulk scalar field from the brane. We present analytical expressions for the general solution of the Schrödinger equation. Thus, the KK massive modes are given in terms of general Heun functions as well as the expression for the massless zero mode, giving rise to a new application of these special functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号