首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of Mn substitution for Co and Fe on the structural and magnetic properties of inverse-spinel CoFe2O4 have been investigated. MnxCo1−xFe2O4 and MnyCoFe2−yO4 thin films were prepared by a sol–gel method. The observed increase of the lattice constant of MnxCo1−xFe2O4 indicates that Mn2+ ions substitute the octahedral Co2+ sites. Conversion electron Mössbauer spectroscopy data indicate that a fraction of octahedral Co2+ ions exchange sites with tetrahedral Fe3+ ions through Mn doping. Vibrating-sample magnetometry data exhibit a large increase of saturation magnetization for both MnxCo1−xFe2O4 and MnyCoFe2−yO4 films compared to that of the CoFe2O4 film. Such enhancement of magnetization can be explained in terms of a breaking of ferrimagnetic order induced by the Co2+ migration.  相似文献   

2.
Magnetic and transport properties of double distorted perovskites CaCuMn6O12 and CaCu2Mn5O12 are studied in a range 2–300 K. The leading role in magnetism of these compounds belongs to antiferromagnetic exchange interaction of Cu2+ in square coordination with Mn3+/Mn4+ in octahedral coordination. The values of saturation magnetization indicate that Mn3+ ions in square coordination are coupled ferromagnetically with Mn3+/Mn4+ in octahedral coordination. The colossal magnetoresistance in the pellet samples is due assumingly to intergranular spin-polarized tunneling of current carriers.  相似文献   

3.
The structure and magnetic properties of spinel-related Mn4+-doped Li0.5Fe2.5O4 nanocrystalline particles of the composition Li0.5Fe2.25Mn0.1875O4, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ~40 nm to ~10 nm and ~2.5 μm to ~10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn4+ dopant ions to substitute for Fe3+ at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn4+ ions substitute for Fe3+ at the octahedral B-sites, this is reversed as milling proceeds with doped Mn4+ ions, balancing Fe3+ vacancies and possibly Li+ ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.  相似文献   

4.
曹慧波  何伦华  王芳卫 《中国物理》2005,14(9):1892-1895
A new single-molecule magnet [Mn11Fe1O12 (CH3COO)16(H2O)4]?2CH3COOH?4H2O (Mn11Fe1) has been synthesized.The structure has been studied by the single crystal x-ray diffraction. The difference of Jahn--Teller distortion between Fe3+ and Mn3+ ion reveals that Fe3+ ion substitutes for Mn3+ ion on the Mn(3) sites in the Mn12 skeleton. The temperature dependence of the magnetization gives a blocking temperature TB=1.9K for Mn11Fe1. Based on the magnetization process analysis of the crystal at T=2K, we suggest that Mn11Fe1 has the ground state with a total spin S= 11/2.  相似文献   

5.
The structural and magnetic properties of the mixed spinel Co1+xSnxFe2?2xO4 system for 0.1≤x≤0.5 have been studied by means of X‐ray diffraction, magnetization, a.c. susceptibility and Mössbauer effect measurements. X‐ray intensity calculations indicate that Sn4+ ions occupy only octahedral (B) sites replacing Fe3+ ions and the added Co2+ ions substitute for A‐site Fe3+ ions. The lattice constants are determined and the applicability of Vegard's law has been tested. The Mössbauer spectra at 300 K have been fitted with two sextets in the ferrimagnetic state corresponding to Fe3+ at tetrahedral (A) and octahedral (B) sites for x≤0.4. The Mössbauer intensity data show that Sn possesses a preference for the B‐site of the spinel. As expected, the hyperfine field and Curie temperature determined from a.c. susceptibility decreases with increasing Sn content. The variation of the saturation magnetic moment per formula unit measured at 77 and 300 K with Sn content is satisfactorily explained on the basis of Néel's collinear spin ordering model for x=0.1–0.4.  相似文献   

6.
Ba(Ti1−xFex)O3 ceramics (x=7, 30 and 70 at%) were prepared by solid-state reaction. All samples are single-phase with 6H-BaTiO3-type hexagonal perovskite structure. Mössbauer spectra show all Fe atoms to be present as Fe3+ in BaTiO3 lattice, occupying M1 octahedral and pentahedral sites. Room-temperature ferromagnetism is exhibited and saturation magnetization gradually decreases with increasing Fe content. The observed ferromagnetism is considered to be an intrinsic property of Ba(Ti1−xFex)O3, originating from super-exchange interactions between Fe3+ in different occupational sites associated with oxygen vacancies. The variation in magnetization with Fe content is related to the ratio of pentahedral to octahedral sites and oxygen vacancies.  相似文献   

7.
In this paper, the structural, thermal and magnetic properties of Ni1−xMnxFe2O4 are presented. It is observed that high concentration of Mn2+ ions into NiFe2O4 tends to reduce the particle size. Calcination at 500 °C has resulted in the growth of Ni1−xMnxFe2O4 nanoparticles, but the calcination at 900 °C has led to the evaporation of the majorities of the polyvinyl alcohol. After calcination at 900 °C, crystallographically oriented NiMnFe2O4 nanoparticles are formed. These Ni1−xMnxFe2O4 nanoparticles show hysteresis behaviour upon magnetization. On the other hand, saturation magnetization (Ms) values decreases with increasing Mn content in ferrite due to the influence of Mn2+ ion in the sub lattice.  相似文献   

8.
The mean square amplitude of lattice vibrations has been measured in the cubic part of the Mn x Fe3-x O4-system. The observed increase of the -value with increasing content of Mn ions in the system is interpreted as that, with gradual occupation of more and more octahedral sites by Mn3+ ions towards higher values ofx, the number of locally distorted Mn3+O 6 2– octahedrons increases.  相似文献   

9.
The structural and magnetic properties of the mixed spinel Mg1+xMnxFe2-2xO4 system for 0.1<= x <= 0.9 have been studied by means of X-ray diffraction, magnetization, a.c. susceptibility and Mössbauer spectroscopy measurements. X-ray intensity calculations indicate that Mn4+ ions occupy only octahedral (B) sites replacing Fe3+ ions and the added Mg2+ ions substitute for A-site Fe3+ ions. All samples are magnetic at 12 K displaying Mössbauer spectra that have magnetic sextets coexisting with a central doublet that increases in population with increasing Mn concentration, indicating the presence of short range ordering (clustering). The Mössbauer intensity data show that Mn possesses a preference for the B-site of the spinel over the whole range of concentration. As expected, the hyperfine field and Curie temperature determined from a.c.susceptibility data decrease with increasing Mn content. Magnetization results indicate that on increasing dilution x, the collinear ferrimagnetic phase breaks down at x = 0.3 before reaching the ferrimagnetic percolation limit (x=0.6), as a result of the presence of competing exchange interactions, which is well supported by Mössbauer results. From all the above results, it is proposed that with increasing Mn content from x=0.6 to 0.9, the frustration and disorder increase in the system suppressing the ferrimagnetic ordering, and the system approaches to a cluster spin glass type of ordering at x=0.8 as reflected in the a.c.susceptibility and Mössbauer spectrum.  相似文献   

10.
The Mössbauer effect technique has been employed for the study of magnetic properties of spinel series Ni1?xCuxMnyFe2?yO4 with 0.0≤x≤1.0, and y=0.6. The substitution of Mn3+ and Cu2+ ions results in a slight decrease of the hyperfine field at B‐ as well as A‐sites. The area ratio of Fe3+ ions at the A‐ and B‐site at 77 K indicates that Cu2+, Ni2+ and Mn3+ ions occupy the octahedral sites in an evidence for complete inverse spinel in this system. The temperature dependence of the hyperfine parameters has been studied for composition with x=0.5 where Nèel point TN and Debye temperature θD are found to be 650 and 679 K, respectively. The temperature dependence of the sublattice magnetization σ(T) obeys a one‐third‐power law in the range 0.5N<0.99.  相似文献   

11.
The anisotropy constants K1 for systems MnxFe3–xO4, with 1x 1·8, are calculated on the basis of the one-ion model and it is shown that the anomalous temperature dependence of the constant K1 can be explained by the presence of Mn3+ ions in octahedral positions. The influence of the spin order on the magnetic anisotropy and the uniaxial anisotropy in systems MnxFe3–xO4 are discussed.  相似文献   

12.
Using the nuclear magnetic resonance, X-ray and electromagnetic methods we investigated structure and properties of the single- and polycrystalline manganous and manganese-zinc ferrites: MnFe2O4, Mn0.8Zn0.2Fe2O4, Mn0.6−xCuxZn0.3Fe2.1O4 (0 ≤x ≤ 0.3). The real structure of the manganous and manganese-zinc ferrites is found to contain simultaneously vacancies in cationic and anionic sublattices. The analysis of the NMR spectra of55Mn,57Fe,63,65Cu and67Zn ions allowed us to find the magnetic and valence states of all ions and their distribution in the real spinel structure. It was shown that the Fe3+ paramagnetic ions, Zn2+ diamagnetic ions and cationic vacancies in tetrapositions are distributed statistically. The Mn3+ and Cu2+ Jahn-Teller ions and presumably Fe2+ in octahedral positions are distributed nonstatistically forming cluster-type mesoscopic inhomogeneities. The correlation between distribution of ions and vacancies in the real structure of manganese-zinc ferrites and their functional electromagnetic properties was found.  相似文献   

13.
The purpose of this work is to establish the relation between the magnetic, electric, and magnetotransport properties and the oxygen nonstoichiometry of the compounds Ba2(FeMo)O x (5.88 ≤ x ≤ 6.01). The investigations established the behavior of the magnetization, resistance, and magnetoresistance of samples in this series. It is shown that the behavior of the magnetization can be described by assuming that the iron ions become divalent (Fe3+→ Fe2+) as a result of the reduction of the samples and the molybdenum ions become hexavalent (Mo5+ → Mo6+) as a result the oxidation of the samples. It is established that there are two contributions to the magnetoresistance which arise as result of magnetic ordering of the intragranular interlayer and intergranular transfer of spin-polarized charge carriers. It is inferred that electric transport in samples of this series is determined by percolation processes between granules with metallic conductivity separated by a dielectric interlayers.  相似文献   

14.
Manganese-magnesium ferrite nanoparticles Mn1−xMgxFe2O4; 0≤x≤0.25 were prepared by the co-precipitation route. The samples were characterized by X-ray diffraction (XRD), which confirms the single phase spinel structure. Crystallite size, calculated from the (3 1 1) peak using the Scherrer formula, was found to increase with increasing Mg2+ concentrations and was found to be within the range 3-6 nm. TEM was also used to characterize the microstructure of nanosized Mn1−xMgxFe2O4. Nominal composition of the samples was determined by Atomic Absorption analysis (AA). Hysteresis loops of manganese-magnesium ferrite were obtained at room temperature and revealed lower saturation magnetization values associated with nanocrystalline Mn1−xMgxFe2O4 particles. This behavior was attributed to structural distortion of surface spins compared to that of the bulk one.  相似文献   

15.
Chromium and manganese co-substituted spinel magnesioferrites of the composition Mg1?x Mn x Fe2?2x Cr2x O4 (x?=?0.0, 0.1, 0.2, 0.3, and 0.5) were investigated with X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic measurements. The cation distribution inferred suggests that Mn2+ and Cr3+ ions dominantly occupy the A- and B-sites respectively. The gradual decrease of the hyperfine fields and Curie temperatures with increasing x reflects a gradual weakening in the AB exchange interaction. Mössbauer data of the sample with x = 0.5 is suggestive of cation clustering and/or superparamagnetism. The magnetization data is suggestive of Yafet-Kittel-type canted magnetism.  相似文献   

16.
Single-phased polycrystalline Y3Fe5−2xAlxCrxO12 garnet samples (x=0, 0.2, 0.4 and 0.6) have been prepared by the conventional ceramic technique. Rietveld refinement of X-ray diffraction patterns of the samples shows them to crystallize in the Ia3d space group and the corresponding lattice constant to decrease with increasing Al3+ and Cr3+ contents (x). Mössbauer results indicate that Cr3+ substitutes for Fe3+ at the octahedral sites whilst Al3+ essentially replaces Fe3+ at the tetrahedral sites. This result indicates that co-doping of Y3Fe5O12 does not affect the preferential site occupancy for separate individual substitution of either Cr3+ or Al3+. The magnetization measurements reveal that the Curie temperature (Tc) monotonically decreases with increasing x while the magnetic moment per unit formula decreases up to x=0.4 and then slightly increases for x=0.6. This reflects a progressive weakening of the ferrimagnetic exchange interaction between the Fe3+ ions at octahedral and tetrahedral sites due to co-substitution. The magnetic moment was calculated using the cations distribution inferred from the Mössbauer data and the collinear ferrimagnetic model, and was found to agree reasonably with the experimentally measured value. The phenomenological amplitude crossover, characterized by the temperature T*, has also been observed in the doped YIG and briefly discussed.  相似文献   

17.
Li0.5Fe2.5−xMnxO4 (0≦x≦1.0) powders with small and uniformly sized particles were successfully synthesized by microwave-induced combustion, using lithium nitrate, ferric nitrate, manganese nitrate and carbohydrazide as the starting materials. The process takes only a few minutes to obtain as-received Mn-substituted lithium ferrite powders. The resultant powders annealed at 650 °C for 2 h and were investigated by thermogravimeter/differential thermal analyzer (TG/DTA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and thermomagnetic analysis (TMA). The results revealed that the Mn content were strongly influenced the magnetic properties and Curie temperature of Mn-substituted lithium ferrite powder. As for sintered Li0.5Fe2.5−xMnxO4 specimens, substituting an appropriate amount of Mn for Fe in the Li0.5Fe2.5−xMnxO4 specimens markedly improved the complex permeability and loss tangent.  相似文献   

18.
We investigate structural features (cell distortions), magnetic and electric properties versus temperature for La1-x K x MnO3 (0.05 < x < 0.2) perovskites. All the phases crystallize in a rhomboedral symmetry (R3c) and are ferromagnetic. Curie temperatures are strongly dependent of x, with a maximum around 308 K for La0.8K0.2MnO3. A sharp decrease of the resistivity is observed just below the Curie temperature, accompanied by a very steep increase of the spontaneous magnetization, characteristic of a conventional Brillouin type curve. The average magnetic moment of Mn is about 88 e.m.u/g at 5 K for the composition La0.8K0.2MnO3. The transition from ferromagnetic-metallic to paramagnetic-semiconducting states is explained from the suggested distribution of the cations (La3+ 1-x K+ x )A(Mn4+ 1-2x Mn4+ 2x )BO3 by the double exchange of Mn3+-Mn4+ pairs at the B-sublattice. Preliminary magnetoresistance measurements on bulk ceramic samples display an MR effect of the same amplitude as in the case of the alkaline earth substituted La manganites.  相似文献   

19.
Spinel LiNixMn2−xO4 (x≤0.9) thin films were synthesized by a sol-gel method employing spin-coating. The Ni-doped films were found to maintain cubic structure at low x but to exhibit a phase transition to tetragonal structure for x≥0.6. Such cubic-tetragonal phase transition can be explained in terms of Ni3+(d7) ions with low-spin (t2g6,eg1) configuration occupying the octahedral sites of the compound, thus being subject to the Jahn-Teller effect. By X-ray photoelectron spectroscopy both Ni3+ and Ni2+ ions were detected where Ni2+ is more populated than Ni3+. Optical properties of the LiNixMn2−xO4 films were investigated by spectroscopic ellipsometry in the visible-ultraviolet range. The measured dielectric function spectra mainly consist of broad absorption structures attributed to charge-transfer transitions, O2−(2p)→Mn4+(3d) for 1.9 (t2g) and 2.8-3.0 eV (eg) structures and O2−(2p)→Mn3+(3d) for 2.3 (t2g) and 3.4-3.6 eV (eg) structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as being due to d-d crystal-field transitions within the octahedral Mn3+ ion. In terms of these transitions, the evolution of the optical absorption spectrum of LiMn2O4 by Ni doping could be explained and the related electronic structure parameters were obtained.  相似文献   

20.
Structural transformation and the related variation in magnetic and optical properties of Co3?x Fe x O4 thin films grown by a sol–gel method have been investigated as the Fe composition varies up to x?=?2. The normal spinel phase is dominant below x?=?0.55 and the inverse spinel phase grows as x increases further. Conversion electron Mössbauer spectroscopy (CEMS) measurements indicate that the normal spinel phase have octahedral Fe3+ ions mostly while the inverse spinel phase contain octahedral Fe2+ and tetrahedral Fe3+ ions. For higher Fe composition (x?>?1.22), Co2+ ions are found to substitute the octahedral Fe2+ sites. The measured optical absorption spectra for the Co3?x Fe x O4 films by spectroscopic ellipsometry support the CEMS interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号