首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
To clarify the degree of the influence of the peripheral organs on the temporal changes in the electron paramagnetic resonance (EPR) signal intensity of a nitroxide radical permeating the blood-brain barrier, 3-hydroxymethyl-2,2,5,5-tetramethylprrolidine-1-oxyl (hydroxymethyl-PROXYL), in the brain, temporal changes in the EPR signal in the brain or inferior vena cava of rats were measured by an in vivo 700 MHz radio-frequency EPR spectrometer equipped with a bridged loop-gap resonator or a surface-coil-type resonator. In all measurements, good linearity was observed on semilogarithmic plots of the signal intensity against time after the hydroxymethyl-PROXYL injection. From these plots, the reaction rate and the initial level of hydroxymethyl-PROXYL in the brain and the vena cava were calculated. A mathematical model expressing the nitroxide radical concentration in the brain, which is connected to other organs via the circulatory system, was made. With this model and the results of the EPR measurements, the degrees of influence of the nitroxide reduction in the brain and the other organs were simulated. It was found that the reaction rate (equal to log2/half-life) of hydroxymethyl-PROXYL observed in the brain reflected the reduction of hydroxymethyl-PROXYL there and was not influenced by the reduction in other organs.  相似文献   

2.
The region-selected intensity determination (RSID) method was proposed to obtain the temporal changes in electron paramagnetic resonance (EPR) signal intensity from a selected region by a stationary magnetic field gradient. To select the region, the subtraction field that was derived from the distance between the center and the projection of the selected region to the direction of the field gradient was applied to the main field. The directions of the stationary magnetic field gradient at a constant strength were systematically changed in a three-dimensional space after each acquisition of the spectrum. All spectra under the field gradient were accumulated and the resultant spectrum was deconvoluted by a spectrum without the field gradient. The center height of the deconvoluted spectrum indicates the signal intensity of the selected region. To verify this method, a phantom or in vivo study was conducted on a 700 MHz radio-frequency EPR spectrometer equipped with a bridged loop-gap resonator. In the temporal EPR measurements of phantoms including a nitroxide radical aqueous solution with and without ascorbic acid, the selected regions were alternatively changed at the position of the two phantoms. The signal intensity derived from the one phantom showed an exponential decay, and for the other phantom, no temporal changes. The spatial resolution of this method was estimated to be 2.7 mm by using a pinpoint phantom that included diphenylpicrylhydrazyl powder. In the in vivo temporal EPR measurements, the selected regions were alternatively changed at the cerebral cortex and the striatum of rats that had received a blood-brain barrier-permeative nitroxide radical. The decay rate of the signal intensity at each region obtained by this method was consistent with those previously reported.  相似文献   

3.
Region-selected intensity determination (RSID) is a method for obtaining the temporal changes in electron paramagnetic resonance (EPR) signal intensity from a target region, without the use of complicated procedures employed in the conventional imaging methods. An in vivo 700-MHz radio frequency EPR spectrometer equipped with a bridged loop-gap resonator was used with the RSID method to estimate intracerebral reducing ability in the rat following acute administration of olanzapine (OZP) or haloperidol (HPD). To this end, temporal changes in EPR signal intensity of target regions (the striatum and the prefrontal cortex) of rats which had received a blood-brain-barrier-permeable nitroxide radical (3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl) via an intravenous route were observed. The half-lives of EPR signal intensity in both regions of OZP- or HPD-treated rats were significantly longer than in control animals. This indicated that reducing abilities of the striatum and cerebral cortex decreased in the rats to which either OZP or HPD had been acutely administered.  相似文献   

4.
In vivo temporal EPR imaging was conducted on the brain of rats that received one of two kinds of blood-brain barrier-permeable nitroxide radicals via the tail vein-one is a water-soluble 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (hydroxymethyl-PROXYL); and the other is a non-water-soluble 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM). From temporal EPR imaging data, temporal changes in the distribution of the nitroxide radical in the cerebral cortex, striatum, and hippocampus in the brain were investigated. It was found that the half-lives of the three parts in the brain of hydroxymethyl-PROXYL are longer and their EPR signal intensities are greater than those of PCAM.  相似文献   

5.
The kinetics of a nitroxide radical in the renal parenchyma and pelvis in rats were investigated by employing an in vivo EPR imaging system equipped with a surface-coil-type resonator (SCR). The exposed kidney of a living rat was inserted into the single-turn coil of the SCR, with the renal major axis aligned with the direction of alternative magnetic field (B(1)). After the injection of nitroxide radical via the tail vein, EPR measurements were repeated. From the temporal EPR images of the kidney on the 2-D projection to the plane which is perpendicular to the direction of B(1,) the decay rate of nitroxide radical in the renal parenchyma and pelvis was estimated. The parenchymal decay rate was found to be significantly shorter than that for the pelvis.  相似文献   

6.
The absolute concentrations of a nitroxide radical in samples in a loop-gap resonator (LGR) were determined by using a radio-frequency (about 720 MHz) electron paramagnetic resonance (EPR) imaging system. EPR imaging of phantoms containing a nitroxide radical, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (carbamoyl-PROXYL), dissolved in various concentrations of an aqueous sodium chloride solution was made to investigate the influence of dielectric losses and sample position within the LGR. As it was found that these influences on the signal intensity were sufficiently small (less than 6%), it is possible to use identical radical solutions in which the radical is dissolved in a known concentration as an internal marker. Two phantoms containing aqueous solutions of 3 mM (as a marker) and 1, 2, 3, 4, or 5 mM (as a sample) carbamoyl-PROXYL were placed together in the LGR. From EPR images of these phantoms, the absolute concentration of the sample could be calculated by using the gray-scale value (i.e., the signal intensity) of the marker and sample within a small margin of error (about 4%).  相似文献   

7.
A rat model of neonatal hypoxic-ischemic encephalopathy (Rice's model) was obtained by unilateral ligation of the common carotid artery of 7-day-old rats with hypoxia (exposure to 8% oxygen). To estimate the in vivo intracerebral reducing ability of the mature rats (8 weeks old) of Rice's model, temporal electron paramagnetic resonance (EPR) imaging of the brain of a rat receiving a blood-brain barrier-permeable nitroxide radical, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl, was performed. In this imaging technique, the decay rate of the EPR signal intensity in a selected region of the brain is indicative of region-specific reducing ability. The effect of neonatal treatment of an antioxidant agent, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), after a hypoxic-ischemic insult was also tested. It was found that the reducing ability had been depleted in the contralateral hemisphere of Rice's model rats; this depletion was suppressed by administering MCI-186.  相似文献   

8.
Isoindoline nitroxides are potentially useful probes for viable biological systems, exhibiting low cytotoxicity, moderate rates of biological reduction and favorable Electron Paramagnetic Resonance (EPR) characteristics. We have evaluated the anionic (5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl; CTMIO), cationic (5-(N,N,N-trimethylammonio)-1,1,3,3-tetramethylisoindolin-2-yloxyl iodide, QATMIO) and neutral (1,1,3,3-tetramethylisoindolin-2-yloxyl; TMIO) nitroxides and their isotopically labeled analogs ((2)H(12)- and/or (2)H(12)-(15)N-labeled) as potential EPR oximetry probes. An active ester analogue of CTMIO, designed to localize intracellularly, and the azaphenalene nitroxide 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO) were also studied. While the EPR spectra of the unlabeled nitroxides exhibit high sensitivity to O(2) concentration, deuteration resulted in a loss of superhyperfine features and a subsequent reduction in O(2) sensitivity. Labeling the nitroxides with (15)N increased the signal intensity and this may be useful in decreasing the detection limits for in vivo measurements. The active ester nitroxide showed approximately 6% intracellular localization and low cytotoxicity. The EPR spectra of TMAO nitroxide indicated an increased rigidity in the nitroxide ring, due to dibenzo-annulation.  相似文献   

9.
A method for synthesis of new covalently linked spin-labeled cyclodextrin (CD) via the attachment of nitronyl nitroxide 2-(4-hydroxyphenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl to permethylated β-cyclodextrin is described. Electron spin echo envelope modulation (ESEEM) studies demonstrate that the new spin-labeled CD exhibits dynamic equilibrium between conformations with radical fragment capping the cavity of CD and radical fragment located outside the cavity. In solution, nitronyl nitroxide attached to CD retains its sensitivity to nitric oxide (NO), as reaction with NO leads to formation of iminonitroxide fragment evidenced by continuous-wave (CW) electron paramagnetic resonance (EPR). At the same time, CW EPR study of the reaction with ascorbic acid shows that the described binding of nitronyl nitroxide to CD does not provide higher stability of radical towards the reduction, and the corresponding rate constants are close to those obtained for free nitronyl nitroxide. Plausible explanations of these observations are discussed.  相似文献   

10.
Paramagnetic nitroxides have been proposed as probes in electron paramagnetic resonance (EPR) imaging and in clinical diagnosis. However, nitroxides are rapidly reducedin vivo to hydroxylamines, diamagnetic EPR-inactive species. Reduction occurs in blood via soluble agents such as ascorbic acid, as well as in the cells via enzymatic and non-enzymatic endocellular systems. To prevent the reduction, a water soluble nitroxide, i.e., potassium peroxylamine disulfonate, is entrapped in reverse phase evaporation vesicles. The loaded liposomes have a high entrapment capacity, and vesicles with the encapsulated agent are stable for days, even at room temperature. The vesiclesin vitro can almost completely prevent the reduction of the entrapped nitroxide by ascorbic acid. In blood of a rat, enriched with a homogenate of rat liver proteins, the vesicles are able to greatly prolong the life time of the nitroxide. In particular, the encapsulated nitroxide has a half-life of more than one hour, compared to two minutes for free nitroxide under the same conditions. Due to these protective effects, the lipid vesicles might be useful as a delivery system for paramagnetic agents.  相似文献   

11.
EPR imaging by using an acyl-protected hydroxylamine, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP), in the head of a living rat after kainic acid (KA)-induced epileptic seizures was performed. ACP is a stable non-radical compound, but is easily deprotected with intracellular esterase to yield a hydroxylamine, which is oxidized by intracellular oxidative stress to yield an EPR-detectable nitroxide radical. From in vivo image data, the average values of EPR signal intensity from the hippocampus, striatum, and cerebral cortex were computed. There was no significant difference in cortical signal intensity between the control and KA-treated rats. The signal intensities from the hippocampus and striatum for the KA-treated rats were significantly higher than those for the control. The in vitro study showed that almost the same quantity of ACP moved into all regions of the brain of the control and KA-treated rats. These findings indicate that following a KA-induced seizure, the oxidative stress in the hippocampus and striatum is enhanced, but not so in the cerebral cortex.  相似文献   

12.
《Current Applied Physics》2014,14(5):798-804
The article presents results of a study of TEMPO-labeled polymer coated superparamagnetic iron(II,III) oxide nanoparticles using both Electron Paramagnetic Resonance (EPR) spectroscopy and Electron Paramagnetic Resonance imaging technique (EPRI). The X-band (9.4 GHz) EPR spectroscopy was used to investigate the behavior of TEMPO-labeled polymer coated magnetite nanoparticles in different conditions (temperature and orientation in magnetic field). The broad line, which comes from the core of Fe3O4 nanoparticles, shows anisotropy. This signal broadens with decreasing temperature, its intensity increases with increasing temperature and the g factor decreases with increasing temperature. The shape of the signal from nitroxide radical strongly depends on temperature. When temperature is higher than 200 K, a narrow triplet appears, but when it is lower than 200 K the signal consists of broad asymmetric lines. Analysis of the signal allowed characterization of the motion of the spin label attached to nanoparticles. Values of anisotropy parameter ɛ and rotational correlation time τc were calculated for TEMPO in the fast rotation regime.The ability of TEMPO-labeled PEG coated magnetite nanoparticles to diffuse within the hydrogel medium was also investigated. The EPR imaging of nanoparticles diffusion in hydrogel was made at room temperature using an EPR L-band (1 GHz) spectrometer. EPRI has been proved effective for evaluation of changes in the spatial distribution of nanoparticles in the sample.  相似文献   

13.
High-field electron paramagnetic resonance (EPR) experiments to monitor binding of lipophilic Gd(III) complexes to human serum albumin (HSA) are described. It was observed that magnetic interactions between the nitroxide moiety ofn-doxyl-stearic acids bound to HSA and Gd(III) complexes resulted in broadening of nitroxide continuous-wave EPR spectra. The broadening effect can be well described by a one-parameter model of additional Lorentzian broadening At 95 GHz, continuous-wave EPR spectra from Gd(III) complexes are fully resolved from the nitroxide signal allowing for simultaneous and independent line shape analysis. Analysis of the line width broadening effects for spectra from a series ofn-doxyl-stearic acids bound to HSA indicated a progressive decrease of spin label-Gd(III) magnetic interactions along the fatty acid (FA) binding channel, consistent with binding of Gd-DOTAP complex in the vicinity of the main FA binding site. The substantial difference in spin label-metal interactions along the FA binding channel for lipophilic Gd(III) complexes with different chelates is indicative of binding to different sites. We also report measurements of dissociation constant for noncovalent binding of Gd(III) complexes to HSA on the basis of analyses of 95 GHz Gd(III) EPR line shapes.  相似文献   

14.
Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power.  相似文献   

15.
Increased reactive oxygen species (ROS) contribute to numerous brain disorders, and ROS generation has been examined in diverse experimental models of lipopolysaccharide (LPS)-induced inflammation. The in vivo electron paramagnetic resonance (EPR)/nitroxide spin probe method has been used to analyze the redox status in animal models modulated by ROS generation. In this study, a blood–brain barrier (BBB)-permeable nitroxide spin probe, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP), was used as a redox-sensitive nitroxide probe. Magnetic resonance images of mouse head after the injection of HMP showed that HMP was distributed throughout all regions of the mouse head including the brain, suggesting that HMP can reveal redox information in all regions of the mouse head. After the injection of HMP through the mouse tail vein 6 h after the injection of LPS, three-dimensional (3D) EPR images were obtained each minute under a field scanning of 0.3 s and with 81 projections. The reduction reaction of HMP in septic mouse heads was remarkably accelerated compared to that in control mice, and this accelerated reaction was inhibited by aminoguanidine and allopurinol, which inhibit enzymatic activities of induced nitric oxide synthase and xanthine oxidase, respectively. Based on the pharmacokinetics of HMP in mouse heads, the half-life mapping of HMP was performed in LPS-treated mouse head. Half-life maps clearly show a difference in the redox status induced by ROS generation in the presence or absence of inhibitors of ROS-generating enzymes. The present results suggest that a 3D in vivo EPR imaging system combined with BBB-permeable HMP is a useful noninvasive tool for assessing changes in the redox status in rodent models of brain disease under oxidative stress.  相似文献   

16.
Nitroxides, unlike trityl radicals, have shorter T2s which until now were not detectable in vivo by a time-domain pulsed Electron Paramagnetic Resonance (EPR) spectrometer at 300 MHz since their phase memory times were shorter than the spectrometer recovery times. In the current version of the time-domain EPR spectrometer with improved spectrometer recovery times, the feasibility of detecting signals from nitroxide radicals was tested. Among the nitroxides evaluated, deuterated 15N-Tempone (15N-PDT) was found to have the longest T2. The signal intensity profile as a function of concentration of these agents was evaluated and a biphasic behavior was observed; beyond a nitroxide concentration of 1.5 mM, signal intensity was found to decrease as a result of self-broadening. Imaging experiments were carried out with 15N-PDT in solutions equilibrated with 0%, 5%, 10%, and 21% oxygen using the single point imaging (SPI) modality in EPR. The image intensity in these tubes was found to depend on the oxygen concentration which in turn influences the T2 of 15N-PDT. In vivo experiments were demonstrated with 15N-PDT in anesthetized mice where the distribution and metabolism of 15N-PDT could be monitored. This study, for the first time shows the capability to image a cell-permeable nitroxide in mice using pulsed EPR in the SPI modality.  相似文献   

17.
A signal detector of longitudinally detected ESR (LODESR) is independent of the resonant frequency. We developed anin vivoLODESR spectrometer operating in the regions of 300, 700, and 900 MHz. Using this apparatus, we estimated signal intensities at different operating frequencies obtained from non- or high-dielectric loss phantoms that contained nitroxide radical solutions and from live rats that had received a nitroxide radical. Our result, higher signal intensities in the high-dielectric loss samples (such as physiological saline solution and animals) at a lower frequency, shows that the influence of a decrease in dielectric loss dominates over the signal reduction caused by smaller Zeeman splitting. We believe that this finding strongly supports anin vivoESR resonant frequency that tends to be low.  相似文献   

18.
Resveratrol (3,4′,5-trihydroxy-trans-stilbene) and six analogs, polyhydroxystilbenes, were synthesized. Their effects on scavenging hydroxyl radicals were studied by electron paramagnetic resonance (EPR) spin trapping method. The EPR signal intensity of the spin adduct of hydroxyl radical to 5,5-dimethyl-1-pyrroline N-oxide was detected and used as a standard for the evaluation of the effect of the seven compounds on scavenging hydroxyl radicals. While all seven compounds exhibited hydroxyl radical-scavenging activity, some of them proved to be more effective than resveratrol in this model. Another stable but low-intensity spin adduct was also observed by EPR. A possible assignment is proposed.  相似文献   

19.
Quenching of the triplet excited state of molecular tryptophan by nitroxide radical in 1,4-dioxane and water solutions was investigated by means of time-resolved electron paramagnetic resonance (EPR) and Fourier-transform (FT)-EPR. The chemically induced dynamic electron polarization (CIDEP) signals with net emissive phase were recorded at these quenching events and were analyzed through radical-triplet pair mechanism. The CIDEP time profiles were well reproduced by Bloch and kinetic equations, assuming radical-triplet pair mechanism with the appropriate quenching rate constants. From a comparison of the simulation and the experiment, CIDEP enhancement factor in 1,4-dioxane was determined to be −30 × P eq, where P eq is the spin polarization of nitroxide at thermal equilibrium. Net emissive CIDEP was also observed by FT-EPR measurements on the nitroxide quenching of the triplet excited state of tryptophan residue in α-lactalbumin. Magnitude of CIDEP created in α-lactalbumin/nitroxide system depends on the pH condition of α-lactalbumin solution, which is related to protein folding dynamics. We argue the CIDEP mechanism at the α-lactalbumin surface and propose a possibility of a novel CIDEP method to probe a protein surface and structural changes.  相似文献   

20.
It is thought that the design of magnetic field modulation coils is one of the factors limiting enlargement of the sample size in electron paramagnetic resonance (EPR) measurements. In this study, we miniaturized the magnetic field modulation coil and combined it with a surface-coil-type resonator (SCR). The inductor of the SCR was a circular single-turn one-loop coil (diameter, 1 mm), and the magnetic field modulation coil was a twin-loop coil consisting of two solenoid coils each made of 15 turns of copper wire on a cylindrical bobbin with an axial length of 3 mm and an elliptical cross section (major axis, 7 mm; minor axis, 3 mm). The former was located on the latter via a spacer (thickness, 3 mm) in such a way that the directions of their axes coincided. Their combined size was about 10 mm wide, 10 mm deep, and 6 mm high. The transmission lines of the SCR were set on resonance at about 700 MHz. EPR measurements of a phantom (comprising agar that included a nitroxide radical and physiological saline solution), made with a miniaturized modulation coil combined with the SCR, exhibited a sensitivity similar to that for the conventional method. Authors' address: Hidekatsu Yokoyama, Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号