首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nanocrystalline thin films of terbium-doped cobalt ferrite were fabricated by a sol–gel method, and the effects of crystallization conditions on the phase, morphology, magnetic and magneto-optical (MO) properties of products were investigated. Due to its large radius, the doping content, x, of Tb3+ ion inside cobalt spinel cannot exceed 0.2. The CoFe2−xTbxO4 films consist of the grains with the average size smaller than 50 nm even annealed up to 800°C. Saturation magnetization, coercive force and MO rotation are strongly dependent on the annealing temperature.  相似文献   

2.
The magnetic and magneto-optical properties of CoFeAlO thin films fabricated by the RF magnetron reactive sputtering technique have been studied via vibrating sample magnetometer and the magneto-optical Kerr effect. It is found that, along the hard magnetization direction, the magnetic hysteresis loop is reversed and the coercive force is negative. This phenomenon can qualitatively be interpreted within the framework of the proposed two-layers model. It was also found that when as-deposited CoFeAlO thin films were annealed in vacuum (2×10−7 Torr) at a temperature of 180 °C for 2 h, the negative coercivity disappeared. The relationship between the magnetic and microstructural behaviors of the thin films is discussed.  相似文献   

3.
The changes of magnetic properties with annealing temperature were studied in the amorphous Fe86.7Zr3.3B4Ag6 thin film. The thin films were deposited by a DC magnetron sputtering method, annealed at 300–700°C for 1 h in vacuum under a field of 1.5 kOe parallel to the film plane, and then furnace-cooled. As a result, it has been found that the Ag addition to Fe–Zr–B amorphous thin films resulted in the decrease of crystallization temperature to 400°C due to promoted crystallization ability. Also, it gave rise to formation of fine BCC α-Fe crystalline precipitates with a grain size smaller than 10 nm in the amorphous matrix near 400°C, and led to prominent enhancement in the magnetic properties of the Fe86.7Zr3.3B4Ag6 thin films. Significantly, excellent magnetic properties such as a saturation magnetization of 1.7 T, a coercive force of 1 Oe and a permeability of 7800 at 50 MHz were obtained in the amorphous Fe86.7Zr3.3B4Ag6 thin film containing 7.2 nm-size BCC α-Fe, which was annealed at 400°C. Also, core loss of 1.4 W cm−3 (Bm=0.1 T) at 1 MHz in the thin film was obtained, and it is a much lower value than had been obtained in any existing soft magnetic materials. Such excellent properties are inferred to originate from the uniform dispersion of nano-size BCC α-Fe in the amorphous matrix.  相似文献   

4.
In thin layered Fe/Co (0 0 1), grown on MgO (0 0 1), both Fe and Co crystallize in the body-centered cubic (BCC) structure, as seen in a series of superlattices where the layer thickness of the components is varied from two to twelve atomic monolayers. These superlattices have novel magnetic properties as observed by magnetization and polarized neutron reflectivity measurements. There is a significant enhancement of the magnetic moments of both Fe and Co at the interfaces. Furthermore, the easy axis of the system changes from [1 0 0] for films of low cobalt content to [1 1 0] for a Co content exceeding 33%. No indication of a uniaxial anisotropy component is found in any of the samples. The first anisotropy constant (K1) of BCC Co is found to be negative with an estimated magnitude of 110 kJ/m3 at 10 K. In all cases, the magnetic moments of Fe and Co have parallel alignment.  相似文献   

5.
Thin superconducting films of CeCoIn5 were prepared in situ by simultaneous thermal evaporation of indium and dc magnetic field assisted sputtering of planar metallic Ce and Co targets. To achieve an effective sputtering of the magnetic Co target a special geometry with two facing planar targets (Ce and Co) and magnetic field perpendicular to the targets was used. The stoichiometric (0 0 1)-oriented CeCoIn5 films were grown on r-cut sapphire substrates with a high-rate of 100 nm/min. The temperature dependence of the electrical resistivity revealed the characteristic heavy-fermion behavior and a superconducting transition at about 2 K in agreement with the literature data for CeCoIn5 bulk material and thin films.  相似文献   

6.
The magnetic properties and microstructure of electrodeposited Ni–W thin films (0–11.7 at% W in composition) were studied. The film structures were divided into three regions: an FCC nanocrystalline phase (0–2 at% W), a transition region from FCC nanocrystalline to amorphous phase (2–7 at% W), and an amorphous phase (>7 at% W). In the transition region, (4–5 at% W) films with perpendicular magnetic anisotropy (PMA) were found. The saturation magnetization, magnetic anisotropy field, perpendicular magnetic anisotropy and perpendicular coercivity for a typical Ni–W film (4.5 at% W) were 420 kA/m, 451 kA/m, 230 kJ/m and 113 kA/m, respectively. The microstructure of Ni–W films with PMA is composed of isolated columnar crystalline grains (27–36 nm) with the FCC phase surrounded by the Ni–W amorphous phase. The appearance of the interface between the magnetic core of Ni crystalline grains and the Ni–W non-magnetic boundary layer seems to be the driving mechanism for the appearance of PMA. The origin of PMA in Ni–W films is mainly attributed to the magnetoelastic anisotropy associated with in-plane internal stress and positive magnetostriction. The secondary source of PMA is believed to be the magnetocrystalline anisotropy of 〈1 1 1〉 columnar grains and its shape magnetic anisotropy. It is concluded that Ni–W electrodeposited films (4–5 at% W) may be applicable for perpendicular magnetic recording media.  相似文献   

7.
Structure, microstructure, magnetic properties of 300-nm-thick FePt films with 10-nm-thick Hf underlayer have been studied. The experimental results showed that the very thin Hf underlayer could promote the ordering at reduced temperatures by facilitating the nucleation of the order phase, leading to refined grain size and magnetic domain size. Therefore, the permanent magnetic properties of FePt films were enhanced. (BH)max and Hc of FePt films were greatly enhanced from 5.0–21.0 MGOe and 1.4–11.0 kOe for single layer to 10.2–23.6 MGOe and 4.5–13.2 kOe for Hf-underlayered films annealed in Ta region of 400–600 °C, respectively. Nevertheless, the severe interdiffusion between the Hf and FePt layers at Ta=800 °C resulted in the decreased S, coarsened surface morphology, grain and magnetic domain sizes, and therefore the slightly decreased (BH)max to 18.0 MGOe.  相似文献   

8.
《Applied Surface Science》2001,169(1-2):134-139
Cadmium sulfide and zinc sulfide films were grown on (1 0 0)GaAs substrate by successive ionic layer adsorption and reaction (SILAR) technique from aqueous precursor solutions at room temperature and normal pressure. The stress development of the thin films was characterized by laser interferometry as a function of the thickness of the films. The morphology and roughness of the films were monitored by atomic force microscopy. Additionally the crystallinity and crystallite size were analyzed by X-ray diffraction and composition by electron spectroscopy for chemical analysis. The CdS thin films had significantly higher stress level and also better crystallinity compared with ZnS thin films. Both films were polycrystalline and cubic, but the CdS thin films followed the substrate (1 0 0) orientation, whereas the ZnS films were (1 1 1) orientated. The roughness vs. film thickness curves of both films followed each other in shape, but the CdS films consisted of smaller particles.  相似文献   

9.
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol–gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm−3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.  相似文献   

10.
We measured geometric and magnetic properties of Co films on the Pd(1 1 1) surface by X-ray photoelectron diffraction (XPD), X-ray magnetic circular dichroism (MCD) at the Co L2,3 edge, and the surface magneto-optical Kerr effect (SMOKE) measurements. Co thin films are found to grow incoherently with fcc island structure on the smooth Pd(1 1 1) substrate. Comparison of MCD and SMOKE measurements of Co thin films grown on rough and smooth Pd(1 1 1) surfaces suggests that perpendicular remnant magnetization and Co orbital moment are enhanced by the rough interface. Pd capping layer also induces perpendicular orbital moment enhancement. These observations indicate the influence of hybridization between Co 3d and Pd 4d at the interface on the magnetic anisotropy.  相似文献   

11.
We report in this work, study on colossal magnetoresistance (CMR) effect in epitaxial La2/3Ca1/3 MnO3 thin films grown on SrTiO3 (0 0 1) substrates by pulsed laser deposition (PLD) technique. The films were grown on as-received SrTiO3 substrates and on SrTiO3 substrates prepared by HF etching (Koster et al., Appl. Phys. Lett. 73 (1998) 2920; V. Leca et al., Wet etching methods for perovskite substrates, University of Twente, MESA+ Research Institute, Low Temperature Division). Two of the samples were annealed in different conditions to investigate the films heat treatment effect on electric and magnetic properties. Electrical resistance was done using the four-probe method at temperatures in the range of 2–375 K without a magnetic field and in an external field of 5 T applied in the film plane. Resistance-magnetic field (R vs. H) at 77 K for the two annealed samples was done in a 5 T sweep magnetic field. The surface morphology and structural information of the films were obtained using atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. Secondary ion mass spectroscopy (SIMS) analysis was performed on the annealed samples to investigate any possible chemical reaction between La2/3Ca1/3MnO3 thin films and SrTiO3 substrate.  相似文献   

12.
Pramod Bhatt  S.M. Yusuf 《Surface science》2011,605(19-20):1861-1865
Thin films of molecule-based charge transfer magnet, cobalt tetracyanoethylene [Co(TCNE)x, x ~ 2] consisting of the transition metal Co, and an organic molecule viz. tetracyanoethylene (TCNE) have been deposited by using physical vapor deposition method under ultra-high vacuum conditions at room temperature. X-ray photoelectron spectroscopy (XPS) technique has been used extensively to investigate the electronic properties of the Co(TCNE)x thin films. The XPS measurements show that the prepared Co(TCNE)x films are clean, and oxygen free. The stoichiometries of the films, based on atomic sensitive factors, are obtained, and yields a ~ 1:2 ratio between metal Co and TCNE for all films. Interestingly, the positive shift of binding energy position for Co(2p), and negative shifts for C(1s) and N(1s) peaks suggest a charge-transfer from Co to TCNE, and cobalt is assigned to its Co(II) valence state. In the valence band investigation, the highest occupied molecular orbital (HOMO) of Co(TCNE)x is found to be at ~ 2.4 eV with respect to the Fermi level, and it is derived either from the TCNE? singly occupied molecular orbital (SOMO) or Co(3d) states. The peaks located at ~ 6.8 eV and ~ 8.8 eV are due to TCNE derived electronic states. The obtained core level and valence band results of Co(TCNE)x, films are compared with those of V(TCNE)x thin film magnet: a well known system of M(TCNE)x type of organic magnet, and important points regarding their electronic properties have been brought out.  相似文献   

13.
The transparent nanocrystalline thin films of undoped zinc oxide and Mn-doped (Zn1−xMnxO) have been deposited on glass substrates via the sol–gel technique using zinc acetate dehydrate and manganese chloride as precursor. The as-deposited films with the different manganese compositions in the range of 2.5–20 at% were pre-heated at 100 °C for 1 h and 200 °C for 2 h, respectively, and then crystallized in air at 560 °C for 2 h. The structural properties and morphologies of the undoped and doped ZnO thin films have been investigated. X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology and microstructure of the thin films. Optical properties of the thin films were determined by photoluminescence (PL) and UV/Vis spectroscopy. The analyzed results indicates that the obtained films are of good crystal quality and have smooth surfaces, which have a pure hexagonal wurtzite ZnO structure without any Mn related phases. Room temperature photoluminescence is observed for the ZnO and Mn-doped ZnO thin films.  相似文献   

14.
Chil-Chyuan Kuo  Po-Jen Huang 《Optik》2012,123(19):1755-1760
A rapid optical measurement system for rapid surface roughness measurement of polycrystalline silicon (poly-Si) thin films was developed in this study. Two kinds of thickness of poly-Si thin films were used to study rapid surface roughness measurements. Six different incident angles were employed for measuring the surface roughness of poly-Si thin films. The results reveal that the incident angle of 20° was found to be a good candidate for measuring the surface roughness of poly-Si thin films. Surface roughness (y) of poly-Si thin films can be determined rapidly from the average value of reflected peak power density (x) measured by the optical system developed using the trend equation of y = ?0.1876x + 1.4067. The maximum measurement error rate of the optical measurement system developed was less than 8.61%. The savings in measurement time of the surface roughness of poly-Si thin films was up to 83%.  相似文献   

15.
Beryllium-nitride (Be3N2) thin films were grown on silicon Si(1 1 1) substrates by pulsed laser deposition in a RIBER LDM-32 system, and characterized with in/ex situ XPS and SIMS. The structure of the films was analyzed with XRD. The films were further analyzed for surface topographic information with SEM and profilometry, and for optical properties with optical spectroscopy. It was observed that the material, prepared at room temperature and annealed at 700 °C for 2 h, had undergone a partial phase transition to a mixture of amorphous and crystalline phases, and the thin films showed a large anti-reflection window in the visible. Therefore, the annealed Be3N2 thin films would be potentially useful for stable electronic packaging with desired photonic features.  相似文献   

16.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

17.
We recently reported a possible antiferromagnetically coupled phase in a Co-rich CoFeSiB thin film, that had a partially nanocrystalline Co phase in an amorphous CoFeSiB matrix. Although an amorphous CoFeSiB film should show a ferromagnetic behavior, we observed an antiferromagnetic coupling associated with a nanocrystalline Co phase in the hysteresis-loop measurements of Co-rich CoFeSiB thin films. We ascribed the observed antiferromagnetic coupling to dense stripe domains consisting of periodically up and down domains perpendicular to the surface of the film. The configuration of the stripe domains was confirmed with magnetic force microscopy images. When a longitudinal magnetic field was applied, the size of the stripe domain was reduced. While for a transverse field, the domain structure became tilted and zigzagged, but no in-plane magnetic anisotropy was noted. When the magnetic field was increased to values above the saturation magnetic field, HS = 2.5 kOe, the domain structure disappeared.  相似文献   

18.
Thin films of zinc oxide were grown on glass substrates by thermal oxidation. The metallic zinc films were thermally oxidized at different temperatures ranging from 300 to 600 °C to yield ZnO thin films. The structural property of the thin films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The X-ray diffraction measurements showed that the films oxidized at 300 °C were not oxidized entirely, and the films deposited at 600 °C had better crystalline quality than the rest. When the oxidation temperature increased above 400 °C, the films exhibited preferred orientation along (002) and high transmittance ranging from 85% to 98% in vis–near-infrared band. Meanwhile, the films showed a UV emission at about 377 nm and green emission. With the increasing of oxidation temperature, the intensity of green emission peak was enhanced, and then decreased, disappearing at 600 °C, and the case of UV emission increased. Furthermore, a strong green emission was observed in the film sintered in pure oxygen atmosphere.  相似文献   

19.
We have fabricated the planar micro-inductors directly on a NiCuZn ferrite substrate. Due to NiCuZn's high resistivity, no insulator is required between the coil and the magnetic film; an advantage in terms of ease fabricated and stray capacitance reduction. Sandwiched inductors show improvement of inductance from 16 to 80 nH at 1 MHz compared with the coreless inductors, and the increment of inductance is larger than the sandwiched thin film inductor.  相似文献   

20.
Crack-free and oriented Sr2FeMoO6 (SFMO) thin film with double perovskite structure has been fabricated by the chemical solution deposition (CSD) method. A homogeneous and stable SFMO precursor solution was successfully prepared by controlling the reaction of starting metal-organic compounds in a mixture solvent of 1-propanol and 2-methoxyethanol. SFMO thin films with c-axis preferred orientation could successfully be synthesized on MgO (0 0 1) and SrTiO3 (0 0 1) substrates by optimizing the several processing conditions. SFMO thin film prepared on SrTiO3 (0 0 1) showed a magnetoresistance effect at a low magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号